Skip to main content

Modern Heuristics for Finance Problems: A Survey of Selected Methods and Applications

  • Chapter
Handbook of Computational and Numerical Methods in Finance

Abstract

The high computational complexity of many problems in financial decision-making has prevented the development of time-efficient deterministic solution algorithms so far. At least for some of these problems, e.g., constrained portfolio selection or non-linear time series prediction problems, the results from complexity theory indicate that there is no way to avoid this problem. Due to the practical importance of these problems, we require algorithms for finding optimal or near-optimal solutions within reasonable computing time. Hence, heuristic approaches are an interesting alternative to classical approximation algorithms for such problems. Over the last years many interesting ideas for heuristic approaches were developed and tested for financial decision-making. We present an overview of the relevant methodology, and, some applications that show interesting results for selected problems in finance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Garey, D. Johnson, Computers and, Intractability, New York, W. H. Freeman& Company, 1979.

    MATH  Google Scholar 

  2. C. Papadimitriou, Computational Complexity, Reading, Addison-Wesley, 1994.

    MATH  Google Scholar 

  3. D. Seese, F. Schlottmann, The building blocks of complexity: a unified criterion and selected applications in economics and, finance, presented at Sydney Financial Mathematics Workshop 2002, http://www.qgroup.org.au/SFMW

  4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, M. Protasi, Complexity and, Approximation, Springer, Heidelberg, 1999.

    Book  MATH  Google Scholar 

  5. C. Reeves (ed.), Modern Heuristic Techniques for Combinatorial Problems, Oxford, Blackwell Scientific Publishers, 1993.

    MATH  Google Scholar 

  6. I. Osman, J. Kelly (eds.), Meta-heuristics: Theory and, Applications, Dordrecht, Kluwer, 1996.

    MATH  Google Scholar 

  7. E. Aarts and, J. Lenstra (eds.), Local Search in Combinatorial Optimization, Chichester, John Wiley&Sons, 1997.

    MATH  Google Scholar 

  8. D. Fogel, Z. Michalewicz, How to Solve it Modern Heuristics, Springer, Heidelberg, 2000.

    MATH  Google Scholar 

  9. D. Pham, D. Karaboga, Intelligent Optimization Techniques, Springer, London, 2000.

    Book  Google Scholar 

  10. O. Nelles, Nonlinear System Identification, Springer, Heidelberg, 2001.

    MATH  Google Scholar 

  11. S. Chen (ed.), Evolutionary Computation in Economics and, Finance, Springer, Heidelberg, 2002.

    Google Scholar 

  12. S. Kirkpatrick, C. Gelatt and, M. Vecchi, Optimization by simulated annealing, Science 220 (1983), 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Cerny, Thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm, Journal of Optimization Theory and, Applications 45 (1985), 41–51.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and, E. Teller, Equation of the state calculations by fast computing machines, Journal of Chemical Physics 21 (1953), 1087–1092.

    Article  Google Scholar 

  15. E. Aarts and, J. Korst, Simulated annealing and, Boltzmann machines: a stochastic approach to combinatorial optimization and, neural computing, Chichester, John Wiley& Sons, 1989.

    MATH  Google Scholar 

  16. E. Aarts, J. Korst and, P. van Laarhoven, Simulated annealing, in: E. Aarts and, J. Lenstra, Local search in combinatorial optimization, Chichester, John Wiley&Sons, 1997, 91–120.

    Google Scholar 

  17. T. Chang, N. Meade, J. Beasley, Y. Sharaiha, Heuristics for cardinality constrained portfolio optimization, Computers&Operations Research 27 (2000), 1271–1302.

    MATH  Google Scholar 

  18. H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, New York, 1959.

    Google Scholar 

  19. G. Dueck and, T. Scheurer, Threshold accepting: A general purpose algorithm appearing superior to simulated annealing, Journal of Computational Physics 90 (1990), 161–175.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Dueck and, P. Winker, New concepts and, algorithms for portfolio choice, Applied Stochastic Models and, Data Analysis 8 (1992), 159–178.

    Article  Google Scholar 

  21. M. Gilli and, E. Kellezi, Portfolio optimization with VaR and, expected Shortfall, in: E. Kontoghoirghes, B. Rustem and, S. Siokos (eds.), Computational Methods in Decisionmaking, Economics and, Finance, Kluwer, Dordrecht, 2002.

    Google Scholar 

  22. M. Gilli and, E. Kellezi, Threshold accepting for index tracking, Research paper, University of Geneva, http://www.unige.ch/ses/metri/gilli/portfolio/Yale-2001-IT.pdf.

  23. P. Winker, Optimization Heuristics in Econometrics, John Wiley&Sons, Chichester, 2001.

    MATH  Google Scholar 

  24. F. Glover, Future paths for integer programming and, links to artificial intelligence, Computers and, Operations Research 13 (1986), 533–549.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming, presented at Congress on Numerical Methods in Combinatorial Optimization, Capri, 1986.

    Google Scholar 

  26. F. Glover, M. Laguna, Tabu Search, Kluwer, Dordrecht, 1997.

    Book  MATH  Google Scholar 

  27. A. Hertz, E. Taillard, and, D. de Werra, Tabu search, in: E. Aarts and, J. Lenstra, Local Search in Combinatorial Optimization, John Wiley&Sons, Chichester, 1997, 121–136.

    Google Scholar 

  28. F. Glover, J. Mulvey, and, K. Hoyland, Solving dynamic stochastic control problems in finance using tabu search with variable scaling, in: H. Osman and, J. Kelly (eds.), Meta-heuristics: Theory and, Applications, Kluwer, Dordrecht, 1996, 429–448.

    Google Scholar 

  29. K. DeJong, D. Fogel, and, H. Schwefel, A history of evolutionary computation, in: T. Baeck, D. Fogel and, Z. Michalewicz (eds.), Evolutionary Computation 1, Bristol, IOP Publishing, 2000, 40–58.

    Google Scholar 

  30. L. Fogel, A. Owens, and, M. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley&Sons, New York, 1966.

    MATH  Google Scholar 

  31. J. Koza, Genetic Programming, MIT Press, Cambridge, MA, 1992.

    MATH  Google Scholar 

  32. J. Koza, Genetic Programming II, MIT Press, Cambridge, MA, 1994.

    MATH  Google Scholar 

  33. J. Koza, F. Bennett, D. Andre, and, M. Keane, Genetic Programming III, Morgan Kaufmann, San Francisco, 1999.

    MATH  Google Scholar 

  34. J. Holland, Adaptation in Natural and, Artificial Systems, Michigan University Press, Ann Arbor, 1975.

    Google Scholar 

  35. I. Rechenberg, Cybernetic solution path of an experimental problem, Royal Aircraft Establishment Library Translation 1122, 1965.

    Google Scholar 

  36. H. Schwefel, Evolution and, Optimum Seeking, John Wiley&Sons, Chichester, 1995.

    Google Scholar 

  37. T. Baeck, D. Fogel, Z. Michalewicz (eds.), Evolutionary Computation 1, Bristol, IOP Publishing, 2000.

    MATH  Google Scholar 

  38. T. Baeck, D. Fogel, Z. Michalewicz (eds.), Evolutionary Computation 2, Bristol, IOP Publishing, 2000.

    MATH  Google Scholar 

  39. W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, R. Smith (eds.), Proc. of the Genetic and, Evolutionary Computation Conference, Morgan Kaufmann, San Francisco, 1999.

    Google Scholar 

  40. G. Rudolph, Finite Markov chain results in evolutionary computation: A tour d’horizon, Fundamentae Informaticae, 1998, 1–22.

    Google Scholar 

  41. H. Muehlenbein, Genetic Algorithms, in: E. Aarts and, J. Lenstra (eds.), Local Search in Combinatorial Optimization, John Wiley&Sons, Chichester, 1997, 137–172.

    Google Scholar 

  42. S. Droste, T. Janses and, I. Wegener, Perhaps not a free lunch but at least a free appetiser, in: W. Banzaf et al. (eds.), Proceedings of First Genetic and, Evolutionary Computation Conference, San Francisco, Morgan Kaufmann, 1999, 833–839.

    Google Scholar 

  43. M. Vose, The Simple Genetic Algorithm, MIT Press, Cambridge, MA, 1999.

    MATH  Google Scholar 

  44. I. Wegener, On the expected runtime and, the success probability of Evolutionary Algorithms, Lecture Notes in Computer Science 1928, Springer, Heidelberg, 2000.

    Google Scholar 

  45. T. Riechmann, Learning in Economics, Physica, Heidelberg, 2001.

    Book  MATH  Google Scholar 

  46. C. Rieck, Evoluationary simulation of asset trading strategies, in: E. Hillebrand, J. Stender (eds.): Many-agent Simulation and, Artificial Life, IOS Press, 1994, 112–136.

    Google Scholar 

  47. P. Tayler, Modelling artificial stock markets using genetic algorithms, in: S. Goonatilake, P. Treleaven (eds.), Intelligent Systems for Finance and, Business, John Wiley& Sons, New York, 1995, 271–287.

    Google Scholar 

  48. B. LeBaron, W. Arthur, R. Palmer, Time series properties of an artificial stock market, Journal of Economic Dynamics&Control 23 (1999), 1487–1516.

    Article  MATH  Google Scholar 

  49. J. Coche, An evolutionary approach to the examination of capital market efficiency, Evolutionary Economics 8, 357–382.

    Google Scholar 

  50. J. Farmer, A. Lo, Frontiers of finance: Evolution and, efficient markets, Santa Fe Institute, 1999, http://www.santafe.edu/~jdf.

  51. R. Walker, E. Haasdijk, M. Gerrets, Credit evaluation using a genetic algorithm; in: S. Goonatilake, P. Treleaven (eds.), Intelligent Systems for Finance and, Business, John Wiley&Sons, New York, 1995, 39–59.

    Google Scholar 

  52. S. Mott, Insider dealing detection at the Toronto Stock Exchange Modelling artificial stock markets using genetic algorithms, in: S. Goonatilake, P. Treleaven (eds.), Intelligent systems for finance and, business, John Wiley&Sons, New York, 1995, 135–144.

    Google Scholar 

  53. A. Frick, R. Herrmann, M. Kreidler, A. Narr, D. Seese, A genetic based approach for the derivation of trading strategies on the German stock market, in: Proceedings ICONIP ′96, Springer, Heidelberg, 1996, 766–770.

    Google Scholar 

  54. R. Bauer, Genetic Algorithms and, Investment Strategies, John Wiley&Sons, New York, 1994.

    Google Scholar 

  55. J. Kingdon, Intelligent Systems and, Financial Forecasting, Springer, Heidelberg, 1997.

    Book  Google Scholar 

  56. R. Tsang, P. Lajbcygier, Optimization of technical trading strategy using split search Genetic Algorithms, in: Y. Abu-Mostafa, B. LeBaron, A. Lo, A. Weigend (eds.), Computational Finance 1999, MIT Press, Cambridge, MA, 2000, 690–703.

    Google Scholar 

  57. W. Langdon, R. Poli, Foundations of Genetic Programming, Springer, Heidelberg, 2002.

    Book  MATH  Google Scholar 

  58. C. Keber, Option valuation with the Genetic Programming approach, in: Y. Abu-Mostafa, B. LeBaron, A. Lo, A. Weigend, Computational finance 1999, MIT Press, Cambridge, MA, 2000, 370–386.

    Google Scholar 

  59. M. Brennan, E. Schwarz, The valuation of American put options, Journal of Finance 32 (1977), 449–462.

    Article  Google Scholar 

  60. J. Cox, S. Ross, M. Rubinstein, Option pricing: a simplified approach, Journal of Financial Economics 7 (1979), 229–263.

    Article  MATH  Google Scholar 

  61. J. Li and, E. Tsang, Reducing failures in investment recommendations using Genetic Programming, presented at 6th Conference on Computing in Economics and, Finance, Barcelona, 2000.

    Google Scholar 

  62. S. Baglioni, C. da Costa Pereira, D. Sorbello and, A. Tettamanzi, An evolutionary approach to multiperiod asset allocation, in: R. Poli, W. Banzhaf, W. Langdon, J. Miller, P. Nordin and, T. Fogarty (eds.), Genetic Programming, Proceedings of EuroGP 2000, Springer, Heidelberg, 2000, 225–236.

    Google Scholar 

  63. S. Chen, T. Kuo, Towards an agent-based foundation of financial econometrics: An approach based on Genetic-Programming financial markets, in: W. Banzhaf et al. (eds.), Proc. of the Genetic and, Evolutionary Computation Conference, Morgan Kaufmann, San Francisco, 1999, 966–973.

    Google Scholar 

  64. W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics 5 (1943), 115–133

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Schalkoff, Artificial Neural Networks, New York, McGraw-Hill, 1997.

    MATH  Google Scholar 

  66. M. Arbib, The Handbook of Brain Theory and, Neural Networks, MIT Press, Cambridge, MA, 1995.

    Google Scholar 

  67. T. Kohonen, Self-organising Maps, Springer, Heidelberg, 1995.

    Book  Google Scholar 

  68. G. Deboeck and, T. Kohonen, Visual Explorations in Finance, Springer, Heidelberg, 1998.

    MATH  Google Scholar 

  69. U. Seiffert, L. Jain (eds.), Self-organising Neural Networks, Springer, Heidelberg, 2002.

    Google Scholar 

  70. D. Rumelhart, J. McClelland, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  71. R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  72. K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (1991), 251–257.

    Article  Google Scholar 

  73. M. Anthony, P. Bartlett, Learning in Neural Networks, University Press, Cambridge, UK, 1999.

    Book  Google Scholar 

  74. A. Zapranis, P. Refenes, Priciples of Neural Model Identification, Springer, London, 1999.

    Book  Google Scholar 

  75. D. Witkowska, Neural Networks application to analysis of daily stock returns at the largest stock markets, in: P. Szczepaniak (ed.), Computational Intelligence and, Applications, Heidelberg, Physica, 1999, 351–364.

    Google Scholar 

  76. M. Azoff, Neural Network Time Series Forecasting of Financial Markets, John Wiley &Sons, New York, 1994.

    Google Scholar 

  77. R. Bharati, V. Desai, M. Gupta, Predicting real estate returns using Neural Networks, Journal of Computational Intelligence in Finance 7 (1999) 1, 5–15.

    Google Scholar 

  78. J. Baetge, A. Jerschensky, Measurement of the probability of insolvency with Mixture-of-Expert Networks, in: W. Gaul, H. Locarek-Junge (eds.), Classification in the Information Age, Springer, Heidelberg, 1999, 421–429.

    Chapter  Google Scholar 

  79. A. Refenes, Neural Networks in the Capital Markets, John Wiley&Sons, Chichester, 1995.

    Google Scholar 

  80. R. Trippi, E. Turban, Neural Networks in Finance and, Investing, Probus Publishing, Chicago, 1993.

    Google Scholar 

  81. M. Odom, R. Sharda, A Neural Network model for bankruptcy prediction, Proceedings of the IEEE International Joint Conference an Neural Networks, Vol. 2, 1990, 163–167.

    Google Scholar 

  82. K. Coleman, T. Graettinger and, W. Lawrence, Neural Networks for bankruptcy prediction: The power to solve financial problems, in: AI review (1991) 4, 48–50.

    Google Scholar 

  83. R. McLeod, D. Malhotra and, R. Malhotra, Predicting credit risk, A Neural Network Approach, Journal of Retail Banking (1993) 3, 37–44.

    Google Scholar 

  84. J. Baetge and, C. Krause, The classification of companies by means of Neural Networks, Journal of Information Science and, Technology 3 (1993) 1, 96–112.

    Google Scholar 

  85. R. Wilson, R. Sharda, Bankruptcy prediction using Neural Networks, Decision Support Systems 11 (1994), 545–557.

    Article  Google Scholar 

  86. E. Altaian, Financial ratios, discriminant analysis and, the prediction of corporate bankruptcy, Journal of Finance 23 (1968), 189–209.

    Google Scholar 

  87. E. Altaian, G. Marco and, F. Varetto, Corporate distress diagnosis: Comparisions using linear discriminant analysis and, Neural Networks, Journal of Banking and, Finance 18 (1994) 3, 505–529.

    Article  Google Scholar 

  88. A. Beltratti, S. Margarita and, P. Terna, Neural Networks for Economic and, Financial Modelling, International Thomson Computer Press, London, 1994.

    Google Scholar 

  89. M. Malliaris and, L. Salchenberger, Beating the best: A Neural Network challenges the Black-Scholes formula, Applied Intelligence 3 (1993) 3, 193–206.

    Article  Google Scholar 

  90. J. Hutchinson, A. Lo, and, T. Poggio, A nonparametric approach to pricing and, hedging derivative securities, Journal of Finance 49 (1994) 3, 851–889.

    Article  Google Scholar 

  91. P. Lajbcygier, A. Flitman, A. Swan, and, R. Hyndman, The pricing and, trading of options using a hybrid Neural Network model with historical volatility, NeurvVest Journal 5 (1997) 1, 27–41.

    Google Scholar 

  92. M. Hanke, Neural Network approximation of analytically intractable option pricing models, Journal of Computational Intelligence in Finance 5 (1997) 5, 20–27.

    Google Scholar 

  93. R. Herrmann, A. Narr, Risk neutrality, Risk (1997) 8.

    Google Scholar 

  94. P. Lajbcygier, Literature review: The non-parametric models, Journal of Computational Intelligence in Finance 7 (1999) 6, 6–18.

    Google Scholar 

  95. F. Black, M. Scholes, The valuation of option contracts and, a test of market efficiency, Journal of Finance 27 (1972), 399–417.

    Article  Google Scholar 

  96. F. Black, M. Scholes, The pricing of options and, corporate liabilities, Journal of Political Economy 81 (1973), 637–654.

    Article  Google Scholar 

  97. H. Locarek-Junge and, R. Prinzler, Estimating Value-at-Risk using Artificial Neural Networks, in: C. Weinhardt, H. Meyer zu Seihausen and, M. Morlock (eds.), Informationssysteme in der Finanzwirtschaft, Springer, Heidelberg, 1998, 385–399.

    Chapter  Google Scholar 

  98. C. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

    Google Scholar 

  99. P. Jorion, Value-at-Risk: The new benchmark for controlling market risk, Irwin, Chicago, 1997.

    Google Scholar 

  100. J. P. Morgan and, Reuters, RiskMetrics™ Technical Document, New York, 1996, http://www.rmg.com.

  101. P. Nairn, P. Herve, and, H. Zimmermann, Advanced adaptive architectures for asset allocation, in: C. Dunis (ed.), Advances in Quantitative Asset Management, Kluwer Academic Publishers, Norwell, MA, 2000, 89–112.

    Google Scholar 

  102. M. Bonilla, P. Marco, I. Olmeda, Forecasting exchange rate volatilities using Artificial Neural Networks, in: M. Bonilla, T. Casasus and, R. Sala, Financial Modelling, Physica, Heidelberg, 2000, 57–68.

    Chapter  Google Scholar 

  103. C. Alexander, Volatility and, correlation: Measurement, models and, applications, in: C. Alexander (ed.), Risk Management and, Analysis, Vol. 1: Measuring and, Modelling Financial Risk, John Wiley&Sons, New York, 1998, 125–171.

    Google Scholar 

  104. S. Judd, Time complexity of learning, in: M. Arbib (ed.), Handbook of Brain Theory and, Neural Networks, MIT Press, Cambridge, MA, 1995, 984–990.

    Google Scholar 

  105. L. Zadeh, Fuzzy sets, Information and, Control 8, (1965) 338–352.

    Article  MathSciNet  MATH  Google Scholar 

  106. L. Zadeh, Outline of a new approach to the analysis of complex systems and, decision processes, IEEE Transactions on Systems, Man and, Cybernetics, SMC-3 (1973) 1, 28–44.

    Article  MathSciNet  Google Scholar 

  107. G. Klir, B. Yuan, Fuzzy Sets and, Fuzzy Logic: Theory and, Applications, Prentice-Hall, Upper Saddle River, NJ, 1995.

    MATH  Google Scholar 

  108. G. Klir, B. Yuan (eds.), Fuzzy Sets, Fuzzy Logic and, Fuzzy Systems, Singapore, World Scientific, 1995.

    Google Scholar 

  109. L. Wang, Fuzzy systems are universal approximators, in: Proceedings of the First IEEE International Conference on Fuzzy Systems, San Diego, 1992, 1163–1169.

    Google Scholar 

  110. B. Kosko, Fuzzy systems as universal approximators, in: IEEE Transactions on Computers, 43 (1994) 9, 1329–1333.

    Article  MATH  Google Scholar 

  111. C. von Altrock, Fuzzy Logic and, NeuroFuzzy Applications in Business and, Finance, Prentice-Hall, Upper Saddle River, NJ, 1997.

    Google Scholar 

  112. H. Rommelfanger, Fuzzy logic based systems for checking credit solvency of small business firms, in: R. Ribeiro, H.-J. Zimmermann, R. Yager and, J. Kacprzyk (eds.), Soft Computing in Financial Engineering, Physica, Heidelberg, 1999, 371–387.

    Google Scholar 

  113. R. Weber, Applications of Fuzzy logic for credit worthiness evaluation, in: R. Ribeiro, H.-J. Zimmermann, R. Yager and, J. Kacprzyk (eds.), Soft Computing in Financial Engineering, Physica, Heidelberg, 1999, 388–401.

    Google Scholar 

  114. D. Ruan, J. Kacprzyk, M. Fedrizzi, Soft Computing for Risk Evaluation and, Management, Physica, Heidelberg, 2001, 375–409.

    Book  MATH  Google Scholar 

  115. K. Korolev, K. Leifert, and, H. Rommelfanger, Fuzzy logic based risk management in financial intermediation, in: D. Ruan, J. Kacprzyk, M. Fedrizzi, Soft Computing for Risk Evaluation and, Management, Physica, Heidelberg, 2001, 447–471.

    Chapter  Google Scholar 

  116. R. Merton, An analytic derivation of the cost of deposit insurance and, loan guarantees, Journal of Banking in Finance (1977) 1, 3–11.

    Google Scholar 

  117. S. Goonatilake, S. Khebbal (eds.), Intelligent Hybrid Systems, John Wiley&Sons, Chichester, 1995.

    Google Scholar 

  118. A. Abraham, M. Koeppen (eds.), Hybrid Information Systems, Springer, Heidelberg, 2002.

    MATH  Google Scholar 

  119. D. Rutkowska, Neuro-fuzzy Architectures and, Hybrid Learning, Springer, Heidelberg, 2002.

    Book  MATH  Google Scholar 

  120. Y. Jin, Advanced Fuzzy Systems Design and, Applications, Springer, Heidelberg, 2002.

    Google Scholar 

  121. J. Balicki, Evolutionary Neural Networks for solving multiobjective optimization problems, in: P. Szczepaniak, Computational Intelligence and, Applications, Springer, Heidelberg, 1999, 108–199.

    Google Scholar 

  122. M. Gupta, Fuzzy neural computing, in: P. Szczepaniak, Computational Intelligence and Applications, Springer, Heidelberg, 1999, 34–41.

    Google Scholar 

  123. R. Herrmann, M. Kreidler, D. Seese and, K. Zabel, A fuzzy-hybrid approach to stock trading, in: S. Usui, T. Omori (eds.), Proceedings ICONIP ′98, Amsterdam, IOS Press, 1998, 1028–1032.

    Google Scholar 

  124. S. Siekmann, R. Neuneier, H.-J. Zimmermann and, R. Kruse, Neuro-Fuzzy methods applied to the German stock index DAX, in: R. Ribeiro, H.-J. Zimmermann, R. Yager and, J. Kacprzyk (eds.), Soft Computing in Financial Engineering, Physica, Heidelberg, 1999, 186–203.

    Google Scholar 

  125. Z. Harland, Using nonlinear Neurogenetic models with profit related objective functions to trade the US T-Bond future, in: Y. Abu-Mostafa, B. LeBaron, A. Lo, A. Weigend (eds.), Computational Finance 1999, MIT Press, Cambridge, MA, 2000, 327–343.

    Google Scholar 

  126. F. Schlottmann, D. Seese, A hybrid genetic-quantitative method for risk-return optimization of credit portfolios, Proc. QMF′2001 (abstracts), Sydney, 2001, http://www.business.uts.edu.au/resources/qmf2001/F_Schlottmann.pdf.

  127. F. Schlottmann, D. Seese, Finding Constrained Downside Risk-Return Efficient Credit Portfolio Structures Using Hybrid Multi-Objective Evolutionary Computation, in: G. Bol, G. Nakhaeizadeh, S. Rachev, T. Ridder, K.-H. Vollmer (eds.), Credit Risk, Heidelberg, Springer, 2003, 231–265.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schlottmann, F., Seese, D. (2004). Modern Heuristics for Finance Problems: A Survey of Selected Methods and Applications. In: Rachev, S.T. (eds) Handbook of Computational and Numerical Methods in Finance. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8180-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8180-7_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6476-7

  • Online ISBN: 978-0-8176-8180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics