Skip to main content

Numerical Methods for Stable Modeling in Financial Risk Management

  • Chapter
Handbook of Computational and Numerical Methods in Finance

Abstract

The seminal work of Mandelbrot and Fama, carried out in the 1960s, suggested the class of α-stable laws as a probabilistic model of financial assets returns. Stable distributions possess several properties which make plausible their application in the field of finance — heavy tails, excess kurtosis, domains of attraction. Unfortunately working with stable laws is very much obstructed by the lack of closed-form expressions for probability density functions and cumulative distribution functions. In the current paper we review statistical and numerical techniques which make feasible the application of stable laws in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Adler, R. Feldman and M. Taqqu, (Eds.) A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhäuser, Boston, Basel, Berlin, 1998.

    MATH  Google Scholar 

  2. V. Akgiray, C. G. Lamoureux, Estimation of Stable-law Parameter: A Comparative Study, Journal of Business and Economic Statistics, 7, 85–93, (1989).

    Google Scholar 

  3. H. Bergström, On Some Expansions of Stable Distributions, Arkiv for Matematik II, 375–378 (1952).

    Article  Google Scholar 

  4. T. Doganoglu, S. Mittnik, An Approximation Procedure for Asymmetric Stable Paretian Densities, Computational Statistics, 13, 463–475 (1998).

    MATH  Google Scholar 

  5. W. H. DuMouchel, Stable Distributions in Statistical Inference, Ph.D. dissertation, Department of Statistics, Yale University (1971).

    Google Scholar 

  6. W. H. DuMouchel, On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution, Annals of Statistics, 1, 948–957 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Embrechts, C. Klüppelberg, T. Mikosch, Modeling Extremal Events for Insurance and Finance, Springer, Berlin, Heidelberg, New York, 1997.

    Book  Google Scholar 

  8. E. Fama, The behavior of stock market prices, J. Bus. Univ. Chicago, 38, 34–105, (1965).

    Google Scholar 

  9. E. Fama, R. Roll, Some Properties of Symmetric Stable Distributions, Journal of the American Statistical Association, 63, 817–836, (1968).

    Article  MathSciNet  Google Scholar 

  10. E. Fama, R. Roll, Parameter Estimates for Symmetric Stable Distributions, Journal of the American Statistical Association, 66, 331–338, (1971).

    Article  MATH  Google Scholar 

  11. I. A. Koutrouvelis, Regression-type Estimation of the Parameters of Stable Laws, Journal of the American Statistical Association, 75, 918–928, (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. A. Koutrouvelis, An Iterative Procedure for the Estimation of the Parameters of Stable Laws, Communications in Statistics. Simulation and Computation, 10, 17–28, (1981).

    Article  MathSciNet  Google Scholar 

  13. B. Mandelbrot, The variation of certain speculative prices, J. Bus. Univ. Chicago, 26, 394–419, (1963).

    Google Scholar 

  14. J. H. McCulloch, Simple Consistent Estimators of Stable Distribution Parameters, Communications in Statistics. Simulation and Computation, 15, 1109–1136,(1986).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. P. Nolan, Numerical Computation of Stable Densities and Distribution Functions, Stochastic Models, 13, 759–774, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. J. Press, Estimation in Univariate and Multivariate Stable Distribution, Journal of the American Statistical Association, 67, 842–846, (1972b).

    Article  MathSciNet  MATH  Google Scholar 

  17. S.T. Rachev and S. Mittnik Stable Paretian Models in Finance, John Wiley&Sons Ltd, 2000.

    Google Scholar 

  18. G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance, Chapman and Hall, New York, London, 1994.

    MATH  Google Scholar 

  19. V. M. Zolotarev, On the Representations of Stable Laws by Integrals, Selected Translations in Mathematical Statistics and Probability, 6, 84–88, American Mathematical Society, Providence, Rhode Island, 1964.

    Google Scholar 

  20. V. M. Zolotarev, One-Dimensional Stable Distributions, Nauka (in Russian), Moscow, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoyanov, S., Racheva-Jotova, B. (2004). Numerical Methods for Stable Modeling in Financial Risk Management. In: Rachev, S.T. (eds) Handbook of Computational and Numerical Methods in Finance. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8180-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8180-7_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6476-7

  • Online ISBN: 978-0-8176-8180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics