Skip to main content

Optimal Quantization Methods and Applications to Numerical Problems in Finance

  • Chapter

Abstract

We review optimal quantization methods for numerically solving nonlinear problems in higher dimensions associated with Markov processes. Quantization of a Markov process consists in a spatial discretization on finite grids optimally fitted to the dynamics of the process. Two quantization methods are proposed: the first one, called marginal quantization, relies on an optimal approximation of the marginal distributions of the process, while the second one, called Markovian quantization, looks for an optimal approximation of transition probabilities of the Markov process at some points. Optimal grids and their associated weights can be computed by a stochastic gradient descent method based on Monte Carlo simulations. We illustrate this optimal quantization approach with four numerical applications arising in finance: European option pricing, optimal stopping problems and American option pricing, stochastic control problems and mean-variance hedging of options and filtering in stochastic volatility models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bally V. (2002): The Central Limit Theorem for a non-linear algorithm based on quantization, forthcoming in Proceedings of the Royal Society.

    Google Scholar 

  2. Bally V., Pagès G. (2000): A quantization algorithm for solving discrete time multidimensional optimal stopping problems, pre-print LPMA-628, Laboratoire de Probabilités & Modèles Aléatoires, Universités Paris 6&7 (France), to appear in Bernoulli.

    Google Scholar 

  3. Bally V., Pagès G. (2003): Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes and their Applications, 106,n01, 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bally V, Pagès G., Printems J. (2001): A stochastic quantization method for nonlinear problems, Monte Carlo Methods and Applications, 7,n01-2, 21–34.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bally V, Pagès G., Printems J. (2002): A quantization method for pricing and hedging multi-dimensional American style options, pre-print LPMA-753, Laboratoire de Probabilités&Modèles Aléatoires, Université Paris 6&7 (France), to appear in Mathematical Finance.

    Google Scholar 

  6. Bally V., Pagès G., Printems J. (2003): First order schemes in the numerical quantization method, Mathematical Finance, 13,n01, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  7. Barles G., Souganidis P. (1991): Convergence of approximation schemes for fully nonlinear second-order equations, Asymptotics Analysis, 4, 271–283.

    MathSciNet  MATH  Google Scholar 

  8. Bucklew J., Wise G. (1982): Multidimensional Asymptotic Quantization Theory with r th Power distortion Measures, IEEE Transactions on Information Theory, Special issue on Quantization, 28,n0 2, 239–247.

    Article  MathSciNet  MATH  Google Scholar 

  9. Duflo, M. (1997): Random Iterative Models, Coll. Applications of Mathematics, 34, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  10. Elliott R., Aggoun L. and J. Moore (1995): Hidden Markov Models, Estimation and Control, Springer Verlag.

    Google Scholar 

  11. Fort J.C., Pagès G. (2002): Asymptotics of optimal quantizers for some scalar distributions, Journal of Computational and Applied Mathematics, 146, 253–275.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gersho A., Gray R. (eds.) (1982): IEEE Transactions on Information Theory, Special issue on Quantization, 28.

    Google Scholar 

  13. Graf S., Luschgy H. (2000): Foundations of Quantization for Probability Distributions, Lecture Notes in Mathematics n01730, Springer, Berlin.

    Book  MATH  Google Scholar 

  14. Kieffer J. (1982): Exponential rate of Convergence for the Lloyd’s Method I, IEEE Transactions on Information Theory, Special issue on Quantization, 28,n02, 205–210.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kohonen T. (1982): Analysis of simple self-organizing process, Biological Cybernetics, 44, 135–140.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kushner H.J., Dupuis P. (2001): Numerical methods for stochastic control problems in continuous time, 2nd edition, Applications of Mathematics, 24, Stochastic Modelling and Applied Probability, Springer-Verlag, New York.

    MATH  Google Scholar 

  17. Kushner H.J., Yin G.G. (1997): Stochastic Approximation Algorithms and Applications, Springer, New York.

    MATH  Google Scholar 

  18. Pagès G. (1997): A space vector quantization method for numerical integration, Journal of Computational and Applied Mathematics, 89, 1–38.

    Article  Google Scholar 

  19. Pagès G., Pham H. (2001): A quantization algorithm for multidimensional stochastic control problems, pre-print LPMA-697, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6&7 (France).

    Google Scholar 

  20. Pagès G., Pham H. (2002): Optimal quantization methods for nonlinear filtering with discrete-time observations, pre-print LPMA-778, Laboratoire de Probabilités et modeles aléatoires, Universités Paris 6&7 (France).

    Google Scholar 

  21. Pagès G., Printems J. (2003): Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods and Applications, 9,n 02.

    Google Scholar 

  22. Villeneuve S., Zanette A. (2002) Parabolic A.D.I. methods for pricing american option on two stocks, Mathematics of Operation Research, 27,n 01, 121–149.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagès, G., Pham, H., Printems, J. (2004). Optimal Quantization Methods and Applications to Numerical Problems in Finance. In: Rachev, S.T. (eds) Handbook of Computational and Numerical Methods in Finance. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8180-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8180-7_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6476-7

  • Online ISBN: 978-0-8176-8180-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics