Advertisement

The Study of Translational Tiling with Fourier Analysis

  • Mihail N. Kolountzakis
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this survey I will try to describe how Fourier analysis is used in the study of translational tiling. Right away I will emphasize two restrictions that separate this area from the general theory of tilings.

Keywords

Convex Body Rigid Motion Dual Lattice Symmetric Convex Body Tiling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bec89.
    Beck, J., On a lattice-point problem of H. Steinhaus, Studio, Sci. Math. Hung. 24 (1989), 263-268.MATHGoogle Scholar
  2. Ber78.
    [Ber78] Bemdtsson, B., Zeros of analytic functions of several variables, Ark. Mat. 16 (1978), 251-262.MathSciNetCrossRefGoogle Scholar
  3. Ciu96.
    Ciucu, M., A remark on sets having the Steinhaus property, Combinatorica 16, no. 3 (1996), 321-324.MathSciNetMATHCrossRefGoogle Scholar
  4. Coh59.
    Cohen, P.J., Homomorphisms and idempotents of group algebras, Bull. Amer. Math. Soc. 65 (1959), 120-122.MathSciNetMATHCrossRefGoogle Scholar
  5. Cro82.
    Croft, H.T., Three lattice-point problems of Steinhaus, Quart. J. Math. 33 (1982), 71-83.MathSciNetMATHCrossRefGoogle Scholar
  6. Fri82.
    Flicker, F., Einführung in die Gitterpunktlehre, Birkhäuser, Basel, 1982.CrossRefGoogle Scholar
  7. Fug74.
    Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121.MathSciNetMATHCrossRefGoogle Scholar
  8. Fug01.
    Fuglede, B., Orthogonal exponentials on the ball, Expo. Math. 19 (2001), 267-272.MathSciNetMATHCrossRefGoogle Scholar
  9. Haj¨®s, G., Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1941), 427-467.MathSciNetGoogle Scholar
  10. HW01.
    [HW01] Han D. and Wang, Y, Lattice Tiling and the Weyl-Heisenberg Frames, Geom. Funct. Anal. 11, no. 4 (2001), 742-758.MathSciNetMATHCrossRefGoogle Scholar
  11. IKP99.
    Iosevich, A., Katz, N., and Pedersen, S., Fourier bases and a distance problem of Erdös, Math. Res. Lett. 6, no. 2 (1999), 251-255.MathSciNetMATHGoogle Scholar
  12. IKT01.
    Iosevich, A., Katz, N., and Tao, T., Convex bodies with a point of curvature do not have Fourier bases, Amer. J. Math. 123, no. 1 (2001), 115-120.MathSciNetMATHCrossRefGoogle Scholar
  13. IKT02.
    Iosevich, A., Katz, N., and Tao, T., Fuglede, conjecture holds for convex planar domains, Math Research Letters 10 (2003), 1-11.MathSciNetGoogle Scholar
  14. IP98.
    Iosevich, A. and Pedersen, S., Spectral and tiling properties of the unit cube, Inter. Math. Res. Notices 16 (1998), 819-828.MathSciNetCrossRefGoogle Scholar
  15. IR02.
    Iosevich, A. and Rudnev, M., A combinatorial approach to orthogonal exponentials, preprint.Google Scholar
  16. JM02.
    Jackson, S. and Mauldin, D., On a lattice problem of H. Steinhaus, Journal Amer. Math. Soc . 15 (2002), 817-856.MathSciNetMATHCrossRefGoogle Scholar
  17. JP99.
    Jorgensen, P. and Pedersen, S., Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl. 5, no. 4 (1999), 285-302.MathSciNetMATHCrossRefGoogle Scholar
  18. Keller, O.-H., Über die lückenlose Erfüllung des Raumes mit Würfeln, J. Reine Angew. Math. 163 (1930), 231-248.MATHGoogle Scholar
  19. K96.
    Kolountzakis, M.N., A new estimate for a problem of Steinhaus, Intern. Math. Res. Notices 11 (1996), 547-555.MathSciNetCrossRefGoogle Scholar
  20. K97.
    Kolountzakis, M.N., Multi-lattice tiles, Intern. Math. Res. Notices 19 (1997), 937- 952.Google Scholar
  21. K98.
    Kolountzakis, M.N., Lattice tilings by cubes: whole, notched and extended, Electr. J. Combinatorics 5, no. 1 (1998), R14.MathSciNetGoogle Scholar
  22. K00.
    Kolountzakis, M., Non-symmetric convex domains have no basis of exponentials, Illinois J. Math. 44, no. 3 (2000), 542-550.MathSciNetMATHGoogle Scholar
  23. K00a.
    Kolountzakis, M.N., On the structure of multiple translational tilings by polygonal regions, Discrete Comput. Geom. 23, no. 4 (2000), 537-553.MathSciNetMATHGoogle Scholar
  24. K00b.
    Kolountzakis, M.N., Packing, tiling, orthogonality and completeness, Bull. L.M.S. 32, no. 5 (2000), 589-599.MathSciNetMATHCrossRefGoogle Scholar
  25. KL01.
    Kolountzakis, M.N. and Laba, I., Tiling and spectral properties of near-cubic domains, preprint.Google Scholar
  26. KL96.
    Kolountzakis, M.N. and Lagarias, J.C., Structure of tilings of the line by a function, Duke Math. J. 82, no. 3 (1996), 653-678.MathSciNetMATHCrossRefGoogle Scholar
  27. KP02.
    Kolountzakis, M.N. and Papadimitrakis, M., The Steinhaus tiling problem and the range of certain quadratic forms, Illinois J. Math. 46, no. 3 (2002), 947-951.MathSciNetMATHGoogle Scholar
  28. KP03.
    Kolountzakis, M.N. and Papadimitrakis, Ì., A class of non-convex polytopes that admit no orthonormal basis of exponentials, Illinois J. Math., to appear.Google Scholar
  29. KW99.
    Kolountzakis, M.N. and Wolff, T., On the Steinhaus tiling problem, Mathematika 46, no. 2 (1999), 253-280.MathSciNetMATHCrossRefGoogle Scholar
  30. Kom92.
    KomjAth, P., A lattice-point problem of Steinhaus, Quart. J. Math. Oxford Ser. (2) 43 (1992), 235-241.MathSciNetCrossRefGoogle Scholar
  31. Laba, I., Fuglede's conjecture for a union of two intervals, Proc. Amer. Math. Soc. 129, no. 10 (2001), 2965-2972.MathSciNetMATHCrossRefGoogle Scholar
  32. Lab02.
    Laba, I., The spectral set conjecture and multiplicative properties of roots of poly- nomials, J. London Math. Soc. (2) 65, no. 3 (2002), 661-671.MathSciNetMATHCrossRefGoogle Scholar
  33. LRW00.
    Lagarias, J.C., Reeds, J.A., and Wang, Y., Orthonormal bases for exponentials for the n-cube, Duke Math. J. 103, no. 1 (2000), 25-37.MathSciNetMATHCrossRefGoogle Scholar
  34. LS92.
    Lagarias, J.C. and Shor, P.W., Keller's cube-tiling conjecture is false in high di- mensions, Bull. Amer. Math. Soc. (N.S.) 27, no. 2 (1992), 279-283.MathSciNetMATHCrossRefGoogle Scholar
  35. MY02.
    Mauldin, D. and Yingst, A., Comments on the Steinhaus tiling problem, Proc. Amer. Math. Soc, to appear.Google Scholar
  36. M80.
    McMullen, P., Convex bodies which tile space by translation, Mathematika 27 (1980), 113-121.MathSciNetMATHCrossRefGoogle Scholar
  37. Mey70.
    Meyer, Y, Nombres de Pisot, nombres de Salem et analyse harmonique, Lect. Notes Math. 117 Springer-Verlag, 1970.Google Scholar
  38. Moser, W., Research Problems in Discrete Geometry, Notes, 1981. [PA95] Pach, J. and Agarwal, P. Combinatorial Geometry, Wiley, New York, 1995.Google Scholar
  39. Ron72.
    Ronkin, L.I., Real sets of uniqueness for entire functions of several variables and the completeness of the system of functions e i(ë,¡Â) , Sibirsk. Mat. Z . 13 (1972), 638-644.MathSciNetMATHGoogle Scholar
  40. Ros66.
    Rosenthal, H.P., Projections onto Transhtion-invariant Subspaces of L p (G), Memoirs Amer. Math. Soc. 63, 1966.Google Scholar
  41. R62.
    Rudin, W, Fourier Analyis on Groups, Interscience Tracts in Pure and Applied Mathematics, no. 12, Interscience Publishers, New York, London, 1962.Google Scholar
  42. R73.
    Rudin, W, Functional Analysis, McGraw-Hill, New York, 1973.MATHGoogle Scholar
  43. Sch94.
    Schmerl, J.H., Tiling space with notched cubes, Discr. Math. 133 (1994), 225-235.MathSciNetMATHCrossRefGoogle Scholar
  44. S93.
    Schneider, R., Convex Bodies: The Brunn-Minkowksi Theory, Cambridge Univ. Press, New York, 1993.CrossRefGoogle Scholar
  45. Sie59.
    [Sie59] Sierpiñski, W., Sur un probl¨¨me de H. Steinhaus concernant les ensembles de points sur le plan, Fund. Math. 46 (1959), 191-194.MathSciNetGoogle Scholar
  46. St90.
    Stein, S., The notched cube tiles Rn, Discr. Math. 80 (1990), 335-337.MATHCrossRefGoogle Scholar
  47. V54.
    Venkov, B.A., On a class of Euclidean polyhedra, Vestnik Leningrad Univ. Ser. Math. Fiz. Him . 9 (1954), 11-31 (Russian).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Mihail N. Kolountzakis
    • 1
  1. 1.Department of MathematicsUniversity of CreteIraklioGreece

Personalised recommendations