Diophantine Equations: Progress And Problems

  • Peter Swinnerton-Dyer
Part of the Progress in Mathematics book series (PM, volume 226)


We survey some of the outstanding problems concerning rational points on curves and surfaces.


Elliptic Curve Elliptic Curf DIOPHANTINE Equation Weak Approximation Algebraic Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. BeauvilleComplex Algebraic Surfaces, second ed., London Mathematical Society Student Texts, vol. 34, Cambridge University Press, Cambridge, 1996.Google Scholar
  2. [2]
    A. O. Bender & P. Swinnerton-Dyer — Solubility of certain pencils of curves of genus 1, and of the intersection of two quadrics in P4, Proc. London Math. Soc. (3)83 (2001), no. 2, 299–329.MathSciNetCrossRefGoogle Scholar
  3. [3]
    B. J. Birch — Homogeneous forms of odd degree in a large number of variables, Mathematika 4 (1957), 102–105.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Bloch & K. KatoL-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, vol. I, Prog. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, 333–400.Google Scholar
  5. [5]
    S. J. BlochHigher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society, Providence, RI, 2000.Google Scholar
  6. [6]
    A. Borel — Cohomologie de SLn et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)4 (1977), no. 4, 613–636.MATHMathSciNetGoogle Scholar
  7. [7]
    M. Bright — Ph.D Thesis, Cambridge University, 2002.Google Scholar
  8. [8]
    M. Bright & S. P. Swinnerton-Dyer — Computing the Brauer-Manin obstructions, to appear, 2002.Google Scholar
  9. [9]
    F. E. Browder (ed.) — Mathematical developments arising from Hilbert problems, American Mathematical Society, Providence, R. I., 1976.MATHGoogle Scholar
  10. [10]
    J. W. S. Cassels — Second descents for elliptic curves, J. Reine Angew. Math. 494 (1998), 101–127.MATHMathSciNetGoogle Scholar
  11. [11]
    J.-L. Colliot-Thélène, A. N. Skorobogatov & P. Swinnerton-Dyer — Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points, Invent. Math. 134 (1998), no. 3, 579–650.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.-L. Colliot-Thélène, J.-J. Sansuc & P. Swinnerton-Dyer — Intersections of two quadrics and Châtelet surfaces. II, J. Reine Angew. Math. 374 (1987), 72–168.MATHMathSciNetGoogle Scholar
  13. [13]
    J.-L. Colliot-Thélène & P. Swinnerton-Dyer — Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. Reine Angew. Math. 453 (1994), 49–112.MATHMathSciNetGoogle Scholar
  14. [14]
    J. Denef, L. Lipshitz, T. Pheidas & J. Van Geel (eds.) — Hilbert’s tenth problem: relations with arithmetic and algebraic geometry, Contemporary Mathematics, vol. 270, American Mathematical Society, Providence, RI, 2000, Papers from the workshop held at Ghent University, Ghent, November 2-5, 1999.Google Scholar
  15. [15]
    G. Faltings, G. Wüstholz, F. Grunewald, N. Schappacher & U. STUHLER — Rational points, third ed., Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig, 1992.Google Scholar
  16. [16]
    J. Gebel & H. G. Zimmer — Computing the Mordell-Weil group of an elliptic curve over Q, Elliptic curves and related topics, CRM Proc. Lecture Notes, vol. 4, Amer. Math. Soc, Providence, RI, 1994, 61–83.Google Scholar
  17. [17]
    B. Gross, W. Kohnen & D. Zagier — Heegner points and derivatives of L-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. H. Gross — Kolyvagin’s work on modular elliptic curves, L-functions and arithmetic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, 235–256.Google Scholar
  19. [19]
    B. H. Gross & D. B. Zagier — Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225–320.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Harari — Obstructions de Manin transcendantes, Number theory (Paris, 1993-1994), London Math. Soc. Lecture Note Ser., vol. 235, Cambridge Univ. Press, Cambridge, 1996, 75–87.Google Scholar
  21. [21]
    D. R. Heath-Brown — The density of rational points on Cayley’s cubic surface, to appear.Google Scholar
  22. [22]
    C. Hooley — On nonary cubic forms, J. Reine Angew. Math. 386 (1988), 32–98.MATHMathSciNetGoogle Scholar
  23. [23]
    C. Hooley, On nonary cubic forms. II, J. Reine Angew. Math. 415 (1991), 95–165.Google Scholar
  24. [24]
    C. Hooley, On nonary cubic forms. Ill, J. Reine Angew. Math. 456 (1994), 53–63.Google Scholar
  25. [25]
    W. W. J. HulsbergenConjectures in arithmetic algebraic geometry, second ed., Aspects of Mathematics, E18, Friedr. Vieweg k Sohn, Braunschweig, 1994, A survey.Google Scholar
  26. [26]
    S. L. Kleiman — Algebraic cycles and the Weil conjectures, Dix esposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386.Google Scholar
  27. [27]
    V. A. Kolyvagin — Finiteness of E(Q) and SH(E,Q) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670-671.MathSciNetGoogle Scholar
  28. [28]
    Y. I. ManinCubic Forms, second ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986.Google Scholar
  29. [29]
    B. Mazur — Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.Google Scholar
  30. [30]
    L. Merel — Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449.MATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    E. Peyre — Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), no. 1, 101–218.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Rapoport, N. Schappacher & P. Schneider (eds.) — Beilinson’s conjectures on special values of L-functions, Perspectives in Mathematics, vol. 4, Academic Press Inc., Boston, MA, 1988.Google Scholar
  33. [33]
    K. Rubin — Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, 167–234.Google Scholar
  34. [34]
    K. Rubin & A. Silverberg — Ranks of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 4, 455–474 (electronic).MATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    P. Salberger & A. N. Skorobogatov — Weak approximation for surfaces defined by two quadratic forms, Duke Math. J. 63 (1991), no. 2, 517–536.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    J.-P. SerreFacteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange-Pisot-Poitou, 1969/70, exp. 19.Google Scholar
  37. [37]
    C. Siegel — Normen algebraischer Zahlen, Werke, Band IV, Vandenhoeck & Ruprecht, 1983, 250–268.Google Scholar
  38. [38]
    A. Silverberg — Open questions in arithmetic algebraic geometry, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc, Providence, RI, 2001, 83–142.Google Scholar
  39. [39]
    A. SkorobogatovTorsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001.Google Scholar
  40. [40]
    A. N. Skorobogatov — Beyond the Manin obstruction, Invent. Math. 135 (1999), no. 2, 399–424.MATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    J. B. Slater & P. Swinnerton-Dyer — Counting points on cubic surfaces. I, Astérisque (1998), no. 251, 1–12, Nombre et répartition de points de hauteur bornée (Paris, 1996).Google Scholar
  42. [42]
    P. Swinnerton-Dyer — The conjectures of Birch and Swinnerton-Dyer, and of Tate, Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, 132–157.CrossRefGoogle Scholar
  43. [43]
    P. Swinnerton-Dyer — Rational points on pencils of conics and on pencils of quadrics, J. London Math. Soc. (2)50 (1994), no. 2, 231–242.Google Scholar
  44. [44]
    P. Swinnerton-Dyer, Arithmetic of diagonal quartic surfaces. II, Proc. London Math. Soc. (3)80 (2000), no. 3, 513–544.Google Scholar
  45. [45]
    P. Swinnerton-Dyer, The solubility of diagonal cubic surfaces, Ann. Sci. école Norm. Sup. (4)34 (2001), no. 6, 891–912.MathSciNetGoogle Scholar
  46. [46]
    P. Swinnerton-Dyer Weak approximation and R-equivalence on cubic surfaces, Rational points on algebraic varieties, Prog. Math., vol. 199, Birkhäuser, Basel, 2001, 357–404.Google Scholar
  47. [47]
    J. Tate — On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, Exp. No. 306, 415–440.Google Scholar
  48. [48]
    R. C. VaughanThe Hardy-Littlewood Method, second ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Peter Swinnerton-Dyer
    • 1
  1. 1.DPMMS, Centre for Mathematical Sciences, University of CambridgeCambridgeUK

Personalised recommendations