Analysis of Variance for Random Models pp 235-275 | Cite as

# Three-Way and Higher-Order Crossed Classifications

## Abstract

In the preceding two chapters, we considered random models involving two factors. In many fields of research, an investigator often works with experiments or surveys involving more than two factors; which entails simultaneous data collection under conditions determined by several factors. This type of design is usually more economical and can provide more information than separate one-way or two-way layouts. The analysis of variance of the two-way crossed model can be readily extended to situations involving three or more factors. In this chapter, we study random effects models involving three factors in somewhat greater detail. The extension of the model to experiments involving four or more factors is also indicated briefly.

## Keywords

Variance Component Exact Confidence Interval Approximate Confidence Interval Closed Form Analytic Expression Uncorrelated Random Variable## Preview

Unable to display preview. Download preview PDF.

## Bibliography

- B. L. Agarwal (1990), Testing a main-effect in a three factor mixed model,
*Comm. Statist.*A*Theory Methods*,**19**, 723–738.MATHCrossRefGoogle Scholar - R. Ahmad and S. M. Mostafa (1987), Empirical Bayes estimation of variance components in balanced random models,
*J. Statist. Comput. Simul*,**27**, 143–153.MATHCrossRefGoogle Scholar - C. A. Bennett and N. L. Franklin (1954),
*Statistical Analysis in Chemistry and the Chemical Industry*, Wiley, New York.Google Scholar - N. J. Birch, R. K. Burdick, and N. Ting (1990), Confidence intervals and bounds for a ratio of summed expected mean squares,
*Technometrics*,**32**, 437–444.MathSciNetMATHCrossRefGoogle Scholar - I. Bross (1950), Fiducial intervals for variance components,
*Biometrics*,**6**, 136–144.CrossRefGoogle Scholar - M. G. Bulmer (1957), Approximate confidence limits for components of variance,
*Biometrika*,**44**, 159–167.MathSciNetMATHGoogle Scholar - R. K. Burdick (1994), Using confidence intervals to test variance components,
*J. Qual. Tech.*,**26**, 30–38.Google Scholar - R. K. Burdick and F. A. Graybill (1992),
*Confidence Intervals on Variance Components*, Marcel Dekker, New York.MATHGoogle Scholar - W. G. Cochran (1951), Testing a linear relation among variances,
*Biometrics*,**7**, 17–32.MathSciNetCrossRefGoogle Scholar - W. G. Cochran and G. M. Cox (1957),
*Experimental Designs*, Wiley, New York.MATHGoogle Scholar - J. Cornfield and J. W. Tukey (1956), Average values of mean squares in facto-rials,
*Ann. Math. Statist.*,**27**, 907–949.MathSciNetMATHCrossRefGoogle Scholar - J. M. Davenport (1975), Two methods of estimating degrees of freedom of an approximate
*F*,*Biometrika*,**62**, 682–684MathSciNetMATHCrossRefGoogle Scholar - J. M. Davenport and J. T. Webster (1973), A comparison of some approximate
*F*-tests,*Technometrics*,**15**, 779–789.MATHCrossRefGoogle Scholar - D. W. Gaylor and F. N. Hopper (1969), Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite’s formula,
*Technometrics*,**11**, 691–706.CrossRefGoogle Scholar - F. A. Graybill (1976),
*Theory and Application of the Linear Model*, Duxbury, North Scituate, MA.MATHGoogle Scholar - F. A. Graybill and C.-M. Wang (1980), Confidence intervals on nonnegative linear combinations of variances,
*J. Amer. Statist. Assoc.*,**75**, 869–873.MathSciNetCrossRefGoogle Scholar - C. R. Hicks and K. V. Turner (1999),
*Fundamental Concepts in Design of Experiments*, 5th ed., Oxford University Press, Oxford, UK.Google Scholar - J. D. Hudson and R. G. Krutchkoff (1968), A Monte Carlo investigation of the size and power of test employing Satterthwaite’s synthetic mean squares,
*Biometrika*,**55**, 431–433.Google Scholar - S. Jeyaratnam and F. A. Graybill (1980), Confidence intervals on variance components in 3-factor cross-classification models,
*Technometrics*,**22**, 375–380.MATHCrossRefGoogle Scholar - S.-H. Li and J. H. Klotz (1978), Components of variance estimation for the split-plot design,
*J. Amer. Statist. Assoc.*,**73**, 147–152.MathSciNetMATHCrossRefGoogle Scholar - T. J. Lorenzen (1978),
*A Comparison of Approximate F Tests Under Pooling Rules*, Research Publication GMR-5928, Mathematics Department, General Motors Research Laboratories, Warren, MI.Google Scholar - R. H. Lyles and L. L. Kupper (1998), UMVU estimators for the population mean and variance based on random effects models for lognormal data,
*Comm. Statist.*A*Theory Methods*,**27**, 795–818.MathSciNetMATHCrossRefGoogle Scholar - S. Moriguti (1954), Confidence limits for a variance component,
*Rep. Statist. Appl. Res. (JUSE)*,**3**, 7–19.Google Scholar - R. H. Myers and R. B. Howe (1971), On alternative approximate
*F*tests of hypotheses involving variance components,*Biometrika*,**58**, 393–396.MathSciNetMATHGoogle Scholar - U. D. Naik (1974), On tests of main effects and interactions in higher-way layouts in the analysis of variance random effects model,
*Technometrics*,**16**, 17–25.MathSciNetMATHCrossRefGoogle Scholar - J. C. W. Rayner, D. J. Best, and G. F. Liddell (1991), Optimal testing in three-way ANOVA model,
*Comm. Statist.*B*Simul. Comput.*,**20**, 411–424.MathSciNetMATHCrossRefGoogle Scholar - F. E. Satterthwaite (1946), An approximate distribution of estimates of variance components,
*Biometrics Bull*.,**2**, 110–114.CrossRefGoogle Scholar - H. Scheffé (1959),
*The Analysis of Variance*, Wiley, New York.MATHGoogle Scholar - B. Seifert (1981), Explicit formulae of exact tests in mixed balanced ANOVA models,
*Biometrical J.*,**23**, 535–550.MathSciNetMATHCrossRefGoogle Scholar - N. Ting, R. K. Burdick, F. A. Graybill, S. Jeyaratnam, and T.-F. C. Lu (1990), Confidence intervals on linear combinations of variance components that are unrestricted in sign,
*J. Statist. Comput. Simul*,**35**, 135–143.MathSciNetCrossRefGoogle Scholar - F. A. van Eeuwijk and P. M. Kroonenberg (1998), Multiplicative models for interaction in three-way ANOVA, with application to plant breeding,
*Biometrics*,**54**, 1315–1333.MATHCrossRefGoogle Scholar - B. L. Welch (1936), The specification of rules for rejecting too variable a product, with particular reference to an electric lamp problem,
*J. Roy. Statist. Soc. Suppl*.,**3**, 29–48.MATHCrossRefGoogle Scholar - B. L. Welch (1956), On linear combinations of several variables,
*J. Amer. Statist. Assoc.*,**51**, 132–148.MathSciNetMATHCrossRefGoogle Scholar - J. S. Williams (1962), A confidence interval for variance components,
*Biometrika*,**49**, 278–281.MathSciNetMATHGoogle Scholar - S. P. Wong and K. O. McGraw (1999), Confidence intervals and
*F*tests for intraclass correlations based on three-way random effects models,*Educ. Psychol. Meas.*,**59**, 270–288.CrossRefGoogle Scholar