Advertisement

Two-Way Crossed Classification with Interaction

  • Hardeo Sahai
  • Mario Miguel Ojeda

Abstract

The two-way crossed model considered in Chapter 3 uses the simple additive model, which makes an important assumption that the value of the difference between the mean responses at two levels of A is the same at each level B. However, in many situations, this simple additive model may not be appropriate. When the differences between the mean response at different levels of A tend to vary over the different levels of B, it is said that the two factors interact. If an experimenter makes more than one observation per cell, it permits him to investigate not only the main effects of both factors but also their interaction. In this chapter, we consider a two-way crossed model with more than one observation per cell, which allows the investigation of interaction terms between the two factors.

Keywords

Variance Component Computing Software Variance Table Exact Confidence Interval Approximate Confidence Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. M. Andrews and A. Herzberg (1985), Data: A Collection of Problems from Many Fields for Students and Research Workers, Springer-Verlag, New York.Google Scholar
  2. J. N. Arvesen (1976), Anote on the Tukey-Hooke variance components results, Ann. Inst. Statist. Math. (Japan), 28, 111–121.MathSciNetCrossRefGoogle Scholar
  3. N. J. Birch and R. K. Burdick (1989), Confidence intervals on the ratios of expected mean squares (θ1 + θ2 + θ3)/θ4, Statist. Probab. Lett, 7, 335–342.MathSciNetCrossRefGoogle Scholar
  4. G. E. P. Box and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.Google Scholar
  5. H. Bozivich, T. A. Bancroft, and H. O. Hartley (1956), Power of analysis of variance test procedures for certain incompletely specified model, Ann. Math. Statist., 27, 1017–1043.MathSciNetCrossRefGoogle Scholar
  6. L. D. Broemeling (1969a), Confidence intervals for measures of heritability, Biometrics, 25, 424–427.CrossRefGoogle Scholar
  7. L. D. Broemeling (1969b), Confidence intervals for variance ratios of random model, J. Amer. Statist. Assoc., 64, 660–664.CrossRefGoogle Scholar
  8. R. K. Burdick and F. A. Graybill (1992), Confidence Intervals on Variance Components, Marcel Dekker, New York.Google Scholar
  9. R. K. Burdick and G. A. Larsen (1997), Confidence intervals on means of variability in R&R studies, J. Qual. Tech., 29, 261–273.Google Scholar
  10. O. L. Davies and P. L. Goldsmith, eds. (1972), Statistical Methods in Research and Production, 4th ed., Oliver and Boyd, Edinburgh.Google Scholar
  11. K. K. Dolezal, R. K. Burdick, and N. J. Birch (1998), Analysis of two-factor R&R study with fixed operators, J. Qual. Tech., 30, 163–170.Google Scholar
  12. L. H. Gautschi (1959), Some remarks on Herbach’s paper, “Optimum nature of the F-test for Model II in the balanced case,” Ann. Math. Statist., 30, 960–963.MathSciNetCrossRefGoogle Scholar
  13. F. A. Graybill (1976), Theory and Application of the Linear Model, Duxbury, North Scituate, MA.Google Scholar
  14. F. A. Graybill and C.-M. Wang (1980), Confidence intervals on nonnegative linear combinations of variances, J. Amer. Statist. Assoc., 75, 869–873.MathSciNetCrossRefGoogle Scholar
  15. R. Gui, F. A. Graybill, R. K. Burdick, and N. Ting (1995), Confidence intervals on ratios of linear combinations for non-disjoint sets of expected mean squares, J. Statist. Plann. Inference, 48, 215–227.MathSciNetCrossRefGoogle Scholar
  16. L. H. Herbach (1959), Properties of Model II type analysis of variance tests A: Optimum nature of the F-test for Model II in the balanced case, Ann. Math. Statist., 30, 939–959.MathSciNetCrossRefGoogle Scholar
  17. W. G. S. Hines (1996), Pragmatics of pooling in ANOVA tables, Amer. Statist., 50, 127–139.Google Scholar
  18. R. R. Hocking, J. W. Green, and R. H. Bremer (1989), Variance component estimation with model-based diagnostics, Technometrics, 31, 227–240.CrossRefGoogle Scholar
  19. R. Hooke (1956), Some applications of biopolykays to the estimation of variance components and their moments, Ann. Math. Statist., 27, 80–98.MathSciNetCrossRefGoogle Scholar
  20. D. G. Janky (2000), Sometimes pooling for analysis of variance hypothesis tests: A review and study of a split-plot model, Amer. Statist., 54, 269–279.MathSciNetGoogle Scholar
  21. H. Jeffreys (1961), Theory of Probability, 3rd ed., Clarendon Press, Oxford, UK; 1st ed., 1939; 2nd ed., 1948.Google Scholar
  22. A. I. Khuri (1981), Simultaneous confidence intervals for functions of variance components in random models, J. Amer. Statist. Assoc., 76, 878–885.MathSciNetCrossRefGoogle Scholar
  23. A. W. Kimball (1951), On dependent tests of significance in the analysis of variance, Ann. Math. Statist, 22, 600–602.MathSciNetCrossRefGoogle Scholar
  24. R. A. Leiva and F. A. Graybill (1986), Confidence intervals for variance components in the balanced two-way model with interaction, Comm. Statist. B Simul. Comput., 15, 301–322.MathSciNetCrossRefGoogle Scholar
  25. R. Mead, T. A. Bancroft, and C. Hand (1975), Power of analysis of variance test procedures for incompletely specified fixed models, Ann. Statist., 3, 797–808.MathSciNetCrossRefGoogle Scholar
  26. G. A. Milliken and D. E. Johnson (1992), Analysis of Messy Data, Vol. 1, Chapman and Hall, London.Google Scholar
  27. D. C. Montgomery and G. C. Runger (1994), Gauge capability and designed experiments, Part II: Experimental design model and variance component estimation, Qual. Engrg., 6, 289–305.CrossRefGoogle Scholar
  28. K. Paark and R. K. Burdick (1998), Confidence intervals for the mean in a balanced two-factor random effets model, Comm. Statist. A Theory Methods, 27, 2807–2825.CrossRefGoogle Scholar
  29. A. E. Pauli (1950), On a preliminary test for pooling mean squares in the analysis of variance, Ann. Math. Statist., 21, 539–556.CrossRefGoogle Scholar
  30. S. Portnoy (1971), Formal Bayes estimation with application to arandom effects model, Ann. Math. Statist., 42, 1379–1402.MathSciNetCrossRefGoogle Scholar
  31. C. V. Rao and K. P. Saxena (1979), A study of power of a test procedure based on two preliminary tests of significance, Estadística, 33, 201–214.MathSciNetGoogle Scholar
  32. H. Sahai (1974), Simultaneous confidence intervals for variance components in some balanced random effects models, Sankhyā Ser. B, 36, 278–287.MathSciNetGoogle Scholar
  33. H. Sahai and R. L. Anderson (1973), Confidence regions for variance ratios of random models for balanced data, J. Amer. Statist. Assoc., 68, 951–952.MathSciNetCrossRefGoogle Scholar
  34. H. Sahai and A. A. Ramírez-Martínez (1978), Estimadores formales de Bayes en el modelo aleatorio general de clasificación doble cruzado, Trab. Estadist., 29, 88–93.CrossRefGoogle Scholar
  35. W. A. Thompson, Jr. (1962), The problem of negative estimates of variance components, Ann. Math. Statist, 33, 273–289.MathSciNetCrossRefGoogle Scholar
  36. W. A. Thompson, Jr. and J. R. Moore (1963), Non-negative estimates of variance components, Technometrics, 5, 441–450.CrossRefGoogle Scholar
  37. N. Ting, R. K. Burdick, and F. A. Graybill (1991), Confidence intervals on ratios of positive linear combinations of variance components, Statist. Probab. Lett, 11, 523–528.MathSciNetCrossRefGoogle Scholar
  38. N. Ting, R. K. Burdick, F. A. Graybill, S. Jeyaratnam, and T.-F. C. Lu (1990), Confidence intervals on linear combinations of variance components that are unrestricted in sign, J. Statist. Comput. Simul, 35, 135–143.MathSciNetCrossRefGoogle Scholar
  39. N. Ting and F. A. Graybill (1991), Approximate confidence interval on ratio of two variances in a two-way crossed model, Biometrical J., 33, 547–558.MathSciNetCrossRefGoogle Scholar
  40. S. B. Vardeman and E. S. Van Valkenburg (1999), Two-way random-effects analyses and gauge in R&R studies, Technometrics, 41, 202–211.Google Scholar
  41. C. M. Wang (1994), On estimating approximate degrees of freedom of chi-squared approximations, Comm. Statist. B Simul. Comput, 23, 769–788.CrossRefGoogle Scholar
  42. C. M. Wang and F. A. Graybill (1981), Confidence intervals on a ratio of variances in the two-factor nested components of variance model, Comm. Statist A Theory Methods, 10, 1357–1368.MathSciNetCrossRefGoogle Scholar
  43. J. S. Williams (1962), A confidence interval for variance components, Biometrika, 49, 278–281.MathSciNetGoogle Scholar
  44. G. Wolde-Tsadik and A. A. Afifi (1980), A comparison of the “sometimes-pool,” “sometimes-switch,” and “never-pool” procedures in the two-way ANOVA random effects model, Technometrics, 22, 367–373.MathSciNetGoogle Scholar
  45. S. Wolfram (1996), The Mathematica Book, 3rd ed., Cambridge University Press, Cambridge, UK.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Hardeo Sahai
    • 1
  • Mario Miguel Ojeda
    • 2
  1. 1.Center for Addiction Studies School of MedicineUniversidad Central del CaribeBayamon, Puerto RicoUSA
  2. 2.Económico AdministrativaUniversidad VeracruzanaKalapa, VeracruzMéxico

Personalised recommendations