Analysis of Variance for Random Models pp 171-233 | Cite as

# Two-Way Crossed Classification with Interaction

## Abstract

The two-way crossed model considered in Chapter 3 uses the simple additive model, which makes an important assumption that the value of the difference between the mean responses at two levels of *A* is the same at each level *B*. However, in many situations, this simple additive model may not be appropriate. When the differences between the mean response at different levels of *A* tend to vary over the different levels of *B*, it is said that the two factors interact. If an experimenter makes more than one observation per cell, it permits him to investigate not only the main effects of both factors but also their interaction. In this chapter, we consider a two-way crossed model with more than one observation per cell, which allows the investigation of interaction terms between the two factors.

## Keywords

Variance Component Computing Software Variance Table Exact Confidence Interval Approximate Confidence Interval## Preview

Unable to display preview. Download preview PDF.

## Bibliography

- D. M. Andrews and A. Herzberg (1985),
*Data: A Collection of Problems from Many Fields for Students and Research Workers*, Springer-Verlag, New York.Google Scholar - J. N. Arvesen (1976), Anote on the Tukey-Hooke variance components results,
*Ann. Inst. Statist. Math. (Japan)*,**28**, 111–121.MathSciNetCrossRefGoogle Scholar - N. J. Birch and R. K. Burdick (1989), Confidence intervals on the ratios of expected mean squares (θ
_{1}+ θ_{2}+ θ_{3})/θ_{4},*Statist. Probab. Lett*,**7**, 335–342.MathSciNetCrossRefGoogle Scholar - G. E. P. Box and G. C. Tiao (1973),
*Bayesian Inference in Statistical Analysis*, Addison-Wesley, Reading, MA.Google Scholar - H. Bozivich, T. A. Bancroft, and H. O. Hartley (1956), Power of analysis of variance test procedures for certain incompletely specified model,
*Ann. Math. Statist.*,**27**, 1017–1043.MathSciNetCrossRefGoogle Scholar - L. D. Broemeling (1969a), Confidence intervals for measures of heritability,
*Biometrics*,**25**, 424–427.CrossRefGoogle Scholar - L. D. Broemeling (1969b), Confidence intervals for variance ratios of random model,
*J. Amer. Statist. Assoc.*,**64**, 660–664.CrossRefGoogle Scholar - R. K. Burdick and F. A. Graybill (1992),
*Confidence Intervals on Variance Components*, Marcel Dekker, New York.Google Scholar - R. K. Burdick and G. A. Larsen (1997), Confidence intervals on means of variability in R&R studies,
*J. Qual. Tech.*,**29**, 261–273.Google Scholar - O. L. Davies and P. L. Goldsmith, eds. (1972),
*Statistical Methods in Research and Production*, 4th ed., Oliver and Boyd, Edinburgh.Google Scholar - K. K. Dolezal, R. K. Burdick, and N. J. Birch (1998), Analysis of two-factor R&R study with fixed operators,
*J. Qual. Tech.*,**30**, 163–170.Google Scholar - L. H. Gautschi (1959), Some remarks on Herbach’s paper, “Optimum nature of the
*F*-test for Model II in the balanced case,”*Ann. Math. Statist.*,**30**, 960–963.MathSciNetCrossRefGoogle Scholar - F. A. Graybill (1976),
*Theory and Application of the Linear Model*, Duxbury, North Scituate, MA.Google Scholar - F. A. Graybill and C.-M. Wang (1980), Confidence intervals on nonnegative linear combinations of variances,
*J. Amer. Statist. Assoc.*,**75**, 869–873.MathSciNetCrossRefGoogle Scholar - R. Gui, F. A. Graybill, R. K. Burdick, and N. Ting (1995), Confidence intervals on ratios of linear combinations for non-disjoint sets of expected mean squares,
*J. Statist. Plann. Inference*,**48**, 215–227.MathSciNetCrossRefGoogle Scholar - L. H. Herbach (1959), Properties of Model II type analysis of variance tests A: Optimum nature of the
*F*-test for Model II in the balanced case,*Ann. Math. Statist.*,**30**, 939–959.MathSciNetCrossRefGoogle Scholar - W. G. S. Hines (1996), Pragmatics of pooling in ANOVA tables,
*Amer. Statist.*,**50**, 127–139.Google Scholar - R. R. Hocking, J. W. Green, and R. H. Bremer (1989), Variance component estimation with model-based diagnostics,
*Technometrics*,**31**, 227–240.CrossRefGoogle Scholar - R. Hooke (1956), Some applications of biopolykays to the estimation of variance components and their moments,
*Ann. Math. Statist.*,**27**, 80–98.MathSciNetCrossRefGoogle Scholar - D. G. Janky (2000), Sometimes pooling for analysis of variance hypothesis tests: A review and study of a split-plot model,
*Amer. Statist.*,**54**, 269–279.MathSciNetGoogle Scholar - H. Jeffreys (1961),
*Theory of Probability*, 3rd ed., Clarendon Press, Oxford, UK; 1st ed., 1939; 2nd ed., 1948.Google Scholar - A. I. Khuri (1981), Simultaneous confidence intervals for functions of variance components in random models,
*J. Amer. Statist. Assoc.*,**76**, 878–885.MathSciNetCrossRefGoogle Scholar - A. W. Kimball (1951), On dependent tests of significance in the analysis of variance,
*Ann. Math. Statist*,**22**, 600–602.MathSciNetCrossRefGoogle Scholar - R. A. Leiva and F. A. Graybill (1986), Confidence intervals for variance components in the balanced two-way model with interaction,
*Comm. Statist.*B*Simul. Comput.*,**15**, 301–322.MathSciNetCrossRefGoogle Scholar - R. Mead, T. A. Bancroft, and C. Hand (1975), Power of analysis of variance test procedures for incompletely specified fixed models,
*Ann. Statist.*,**3**, 797–808.MathSciNetCrossRefGoogle Scholar - G. A. Milliken and D. E. Johnson (1992),
*Analysis of Messy Data*, Vol. 1, Chapman and Hall, London.Google Scholar - D. C. Montgomery and G. C. Runger (1994), Gauge capability and designed experiments, Part II: Experimental design model and variance component estimation,
*Qual. Engrg.*,**6**, 289–305.CrossRefGoogle Scholar - K. Paark and R. K. Burdick (1998), Confidence intervals for the mean in a balanced two-factor random effets model,
*Comm. Statist. A Theory Methods*,**27**, 2807–2825.CrossRefGoogle Scholar - A. E. Pauli (1950), On a preliminary test for pooling mean squares in the analysis of variance,
*Ann. Math. Statist.*,**21**, 539–556.CrossRefGoogle Scholar - S. Portnoy (1971), Formal Bayes estimation with application to arandom effects model,
*Ann. Math. Statist.*,**42**, 1379–1402.MathSciNetCrossRefGoogle Scholar - C. V. Rao and K. P. Saxena (1979), A study of power of a test procedure based on two preliminary tests of significance,
*Estadística*,**33**, 201–214.MathSciNetGoogle Scholar - H. Sahai (1974), Simultaneous confidence intervals for variance components in some balanced random effects models,
*Sankhyā Ser. B*,**36**, 278–287.MathSciNetGoogle Scholar - H. Sahai and R. L. Anderson (1973), Confidence regions for variance ratios of random models for balanced data,
*J. Amer. Statist. Assoc.*,**68**, 951–952.MathSciNetCrossRefGoogle Scholar - H. Sahai and A. A. Ramírez-Martínez (1978), Estimadores formales de Bayes en el modelo aleatorio general de clasificación doble cruzado,
*Trab. Estadist.*,**29**, 88–93.CrossRefGoogle Scholar - W. A. Thompson, Jr. (1962), The problem of negative estimates of variance components,
*Ann. Math. Statist*,**33**, 273–289.MathSciNetCrossRefGoogle Scholar - W. A. Thompson, Jr. and J. R. Moore (1963), Non-negative estimates of variance components,
*Technometrics*,**5**, 441–450.CrossRefGoogle Scholar - N. Ting, R. K. Burdick, and F. A. Graybill (1991), Confidence intervals on ratios of positive linear combinations of variance components,
*Statist. Probab. Lett*,**11**, 523–528.MathSciNetCrossRefGoogle Scholar - N. Ting, R. K. Burdick, F. A. Graybill, S. Jeyaratnam, and T.-F. C. Lu (1990), Confidence intervals on linear combinations of variance components that are unrestricted in sign,
*J. Statist. Comput. Simul*,**35**, 135–143.MathSciNetCrossRefGoogle Scholar - N. Ting and F. A. Graybill (1991), Approximate confidence interval on ratio of two variances in a two-way crossed model,
*Biometrical J.*,**33**, 547–558.MathSciNetCrossRefGoogle Scholar - S. B. Vardeman and E. S. Van Valkenburg (1999), Two-way random-effects analyses and gauge in R&R studies,
*Technometrics*,**41**, 202–211.Google Scholar - C. M. Wang (1994), On estimating approximate degrees of freedom of chi-squared approximations,
*Comm. Statist.*B*Simul. Comput*,**23**, 769–788.CrossRefGoogle Scholar - C. M. Wang and F. A. Graybill (1981), Confidence intervals on a ratio of variances in the two-factor nested components of variance model,
*Comm. Statist*A*Theory Methods*,**10**, 1357–1368.MathSciNetCrossRefGoogle Scholar - J. S. Williams (1962), A confidence interval for variance components,
*Biometrika*,**49**, 278–281.MathSciNetGoogle Scholar - G. Wolde-Tsadik and A. A. Afifi (1980), A comparison of the “sometimes-pool,” “sometimes-switch,” and “never-pool” procedures in the two-way ANOVA random effects model,
*Technometrics*,**22**, 367–373.MathSciNetGoogle Scholar - S. Wolfram (1996),
*The Mathematica Book*, 3rd ed., Cambridge University Press, Cambridge, UK.Google Scholar