Analysis of Variance for Random Models pp 115-169 | Cite as

# Two-Way Crossed Classification without Interaction

## Abstract

The one-way classification discussed in Chapter 2 involved the levels of only a single factor. It is the simplest model in terms of experimental layout, assumptions, computations, and analyses. However, in many investigations, it is desirable to measure response at combinations of levels of two or more factors considered simultaneously. Two factors are said to be crossed if the data contain observations at each combination of a level of one factor with a level of the other factor. Consider two factors *A* and *B*, where *a* levels are sampled from a large population of levels of *A* and *b* levels are sampled from a large population of levels of *B*, and one observation is made on each of the *ab* cells. This type of layout is commonly known as the balanced two-way crossed random model with one observation per cell. It can also be viewed as a randomized complete block design where both blocks and treatments are regarded as random.

## Keywords

Mean Square Error Variance Component Computing Software Approximate Confidence Interval Simultaneous Confidence Interval## Preview

Unable to display preview. Download preview PDF.

## Bibliography

- R. Ahmad and S. M. Mostafa (1987), Empirical Bayes estimation of variance components in balanced random models,
*J. Statist. Comput. SimuL*,**27**, 143–153.MATHCrossRefGoogle Scholar - D. M. Andrews and A. Herzberg (1985),
*Data: A Collection of Problems from Many Fields for Students and Research Workers*, Springer-Verlag, New York.Google Scholar - C. Arteaga, S. Jeyaratnam, and F. A. Graybill (1982), Confidence intervals for proportions of total variance in the two-way cross component of variance model,
*Comm. Statist. A Theory Methods*,**11**, 1643–1658.MathSciNetCrossRefGoogle Scholar - R. K. Burdick and F. A. Graybill (1992),
*Confidence Intervals on Variance Components*, Marcel Dekker, New York.MATHGoogle Scholar - R. R. Corbeil and S. R. Searle (1976), A comparison of variance component estimators,
*Biometrics*,**32**, 779–791.MathSciNetMATHCrossRefGoogle Scholar - O. L. Davies and P. L. Goldsmith, eds. (1972),
*Statistical Methods in Research and Production*, 4th ed., Oliver and Boyd, Edinburgh.Google Scholar - L. H. Gautschi (1959), Some remarks on Herbach’s paper, “Optimum nature of the F-test for Model II in the balanced case,”
*Ann. Math. Statist.*,**30**, 960–963.MathSciNetMATHCrossRefGoogle Scholar - F. A. Graybill (1976),
*Theory and Application of the Linear Model*, Duxbury, North Scituate, MA.MATHGoogle Scholar - F. A. Graybill and C.-M. Wang (1980), Confidence intervals on nonnegative linear combinations of variances,
*J. Amer. Statist. Assoc.*,**75**, 869–873.MathSciNetCrossRefGoogle Scholar - L. H. Herbach (1959), Properties of Model II type analysis of variance tests A: Optimum nature of the F-test for Model II in the balanced case,
*Ann. Math. Statist.*,**30**, 939–959.MathSciNetMATHCrossRefGoogle Scholar - J. L. Hodges, Jr. and E. L. Lehmann (1951), Some applications of the Cramér-Rao inequality, in L. Lecam and J. Neyman,
*Proceedings Second Berkeley Symposium on Mathematical Statistics and Probability*, University of California Press, Berkeley, CA, 13–22.Google Scholar - H. Jeffreys (1961),
*Theory of Probability*, 3rd ed., Clarendon Press, Oxford, UK; 1st ed., 1939; 2nd ed., 1948.MATHGoogle Scholar - D. E. Johnson and F. A. Graybill (1972a), Estimating σ2 in a two-way classification model with interaction,
*J. Amer. Statist. Assoc.*,**67**, 388–394.MathSciNetMATHGoogle Scholar - D. E. Johnson and F. A. Graybill (1972b), An analysis of a two-way model with interaction and no replication,
*J. Amer. Statist. Assoc.*,**67**, 862–868.MathSciNetMATHCrossRefGoogle Scholar - A. W. Kimball (1951), On dependent tests of significance in the analysis of variance,
*Ann. Math. Statist.*,**22**, 600–602.MathSciNetMATHCrossRefGoogle Scholar - K. R. Lee and C. H. Kapadia (1984), Variance component estimators for the balanced two-way mixed model,
*Biometrics*,**40**, 507–512.CrossRefGoogle Scholar - E. L. Lehmann (1986),
*Testing Statistical Hypotheses*, 2nd ed., Wiley, New York; reprint, 1997, Springer-Verlag, New York.MATHCrossRefGoogle Scholar - T.-F. C. Lu, F. A. Graybill, and R. K. Burdick (1987), Confidence intervals on the ratio of expected mean squares (
*θ*+*dθ*_{2})/*θ*_{3},*Biometrics*,**43**, 535–543.MathSciNetCrossRefGoogle Scholar - R. H. Lyles and L. L. Kupper (1998), UMVU estimators for the population mean and variance based on random effects models for lognormal data,
*Comm. Statist.*A*Theory Methods*,**27**, 795–818.MathSciNetMATHCrossRefGoogle Scholar - G. A. Milliken and D. E. Johnson (1992),
*Analysis of Messy Data*, Vol. 1, Chapman and Hall, London.MATHGoogle Scholar - K. Paark and R. K. Burdick (1998), Confidence intervals for the mean in a balanced two-factor random effets model,
*Comm. Statist. A Theory Methods*,**27**, 2807–2825.MATHCrossRefGoogle Scholar - J. M. Perkins (1972), The principle component analysis of genotype-environmental interactions and physical measures of the environmental,
*Heredity*,**29**, 51–70.CrossRefGoogle Scholar - J. M. Perkins (1974), Orthogonal and principal components analysis of genotype-environmental interactions for multiple numerical traits,
*Heredity*,**32**, 189–210.CrossRefGoogle Scholar - J. M. Perkins and J. L. Jinks (1968a), Enviromental and genotype-enviromental components of variability III: Multiple lines and crosses,
*Heredity*,**23**, 339–356.CrossRefGoogle Scholar - J. M. Perkins and J. L. Jinks (1968b), Environmental and genotype-environmental components of variability IV: Non-linear interactions for multiple inbred lines,
*Heredity*,**23**, 525–535.CrossRefGoogle Scholar - S. Portnoy (1971), Formal Bayes estimation with application to a random effects model,
*Ann. Math. Statist*,**42**, 1379–1402.MathSciNetMATHCrossRefGoogle Scholar - H. Sahai (1974a), Non-negative maximum likelihood and restricted maximum likelihood estimators of variance components in two simple linear models,
*Util.Matk*,**5**, 151–160.MathSciNetMATHGoogle Scholar - H. Sahai (1974b), Some formal Bayes estimators of variance components in the balanced three-stage nested random effects models,
*Comm. Statist*,**3**, 233–242.MathSciNetMATHGoogle Scholar - H. Sahai (1974c), Simultaneous confidence intervals for variance components in some balanced random effects models,
*Sankhyā Ser. B*,**36**, 278–287.MathSciNetMATHGoogle Scholar - H. Sahai (1975), Bayes equivariant estimators in a crossed-classification random effects model,
*Ann. Inst Statist Math. (Japan)*,**27**, 501–505.MathSciNetMATHCrossRefGoogle Scholar - H. Sahai and R. L. Anderson (1973), Confidence regions for variance ratios of random models for balanced data,
*J. Amer. Statist. Assoc.*,**68**, 951–952.MathSciNetMATHCrossRefGoogle Scholar - H. Sahai and A. Khurshid (1992), A comparison of estimators of variance components in a two-way balanced crossed-classification random effects model,
*Statistics*,**23**, 128–143.MathSciNetCrossRefGoogle Scholar - H. Sahai and A. A. Ramírez-Martínez (1975), Some formal Bayes estimators in a crossed-classification random effects model,
*Austral. J. Statist*,**17**, 43–48.MathSciNetMATHCrossRefGoogle Scholar - G. K. Shukla (1972), An invariant test for the homogeneity of variances in a two-way classification,
*Biometrics*,**28**, 1063–1073.MathSciNetCrossRefGoogle Scholar - W. Y. Tan (1965), On the estimation of parameters in the analysis of variance I: Two-way simple random effects model,
*J. Agricultural Assoc China*,**21**, 9–18.Google Scholar - W. Y. Tan (1981), The power function and an approximation for testing variance components in the presence of interaction in two-way random effects models,
*Canad. J. Statist*,**9**, 91–99.MathSciNetMATHCrossRefGoogle Scholar - W. A. Thompson, Jr. (1962), The problem of negative estimates of variance components,
*Ann. Math. Statist*,**33**, 273–289.MathSciNetMATHCrossRefGoogle Scholar - N. Ting, R. K. Burdick, and F. A. Graybill (1991), Confidence intervals on ratios of positive linear combinations of variance components,
*Statist. Probab. Lett*,**11**, 523–528.MathSciNetMATHCrossRefGoogle Scholar - N. Ting and F. A. Graybill (1991), Approximate confidence interval on ratio of two variances in a two-way crossed model,
*Biometrical J.*,**33**, 547–558.MathSciNetMATHCrossRefGoogle Scholar - J. W. Tukey (1949), One degree of freedom for non-additivity,
*Biometrics*,**5**, 232–242.MathSciNetCrossRefGoogle Scholar - L. R. Verdooren (1980), On estimation of variance components,
*Statist Neer-land*,**34**, 83–106.MathSciNetMATHCrossRefGoogle Scholar - A. J. Weeks (1983),
*A Genstat Primer*, Arnold, London.Google Scholar - S. Wolfram (1996),
*The Mathematica Book*, 3rd ed., Cambridge University Press, Cambridge, UK.MATHGoogle Scholar