One-Way Classification

  • Hardeo Sahai
  • Mario Miguel Ojeda


In this chapter, we consider the random effect model involving only a single factor or variable in an experimental study involving a comparison of a set of treatments, where each of the treatments can be randomly assigned to experimental units. Such a layout is commonly known as the one-way classification or the completely randomized design. The one-way classification is the simplest and most useful model in statistics. In a one-way random effects model, treatments, groups, or levels of a factor are regarded to be a random sample from a large population. It is the simplest nontrivial and widely used variance component model. Moreover, the statistical concepts and tools developed to handle a one-way random model can be adapted to provide solutions to more complex models. Models involving two or more factors will be considered in succeeding chapters.


Mean Square Error Variance Component Interclass Correlation Negative Estimate Likelihood Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Ahmad and S. M. Mostafa (1987), Empirical Bayes estimation of variance components in balanced random models, J. Statist. Comput. Simul, 27, 143–153.MATHCrossRefGoogle Scholar
  2. H. W. Alexander (1946), Tests of significance for intraclass correlation when family sizes are not equal, Sankhyā, 7, 435–438.Google Scholar
  3. M. M. Ali and G. Tiao (1971), Effects of non-normality on inferences about variance components, Technometrics, 13, 635–650.MATHMathSciNetCrossRefGoogle Scholar
  4. R. L. Anderson (1965a), Negative variance estimates, Query 9, Technometrics, 7, 75–76.Google Scholar
  5. R. L. Anderson (1965b), Non-balanced experimental designs for estimating variance components, Report on Seminar on Sampling of Bulk Materials, U.S.-Japan Cooperative Science Program, Tokyo, Japan; also published as Mim. Ser. Paper 452, Institute of Statistics, University of North Carolina, Raleigh, NC.Google Scholar
  6. R. L. Anderson and T. A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill, New York.MATHGoogle Scholar
  7. J. N. Arvesen and M. W. J. Layard (1975), Asymptotically robust tests in unbalanced variance components models, Ann. Statist., 3, 1122–1134.MATHMathSciNetCrossRefGoogle Scholar
  8. M. Atiqullah (1962), On the effect of non-normality on the estimation of components of variance, J. Roy. Statist. Soc. Ser. B, 24, 140–147.MATHMathSciNetGoogle Scholar
  9. V. D. Barnett (1966), Evaluation of the maximum likelihood estimators where the likelihood equation has multiple roots, Biometrika, 70, 343–365.Google Scholar
  10. K. S. Bay (1973), The effect of non-normality on the sampling distribution and standard error of reliability coefficient estimates under an analysis of variance model, Brit. J. Math. Statist. Psychol, 26, 45–57.CrossRefGoogle Scholar
  11. G. Bian (2002), Bayesian estimates in a one-way random effects model, Austral. N. Z. J. Statist., 44, 99–108.MATHMathSciNetCrossRefGoogle Scholar
  12. T. J. Boardman (1974), Confidence intervals for variance components: A comparative Monte Carlo study, Biometrics, 30, 251–262.MATHCrossRefGoogle Scholar
  13. T. P. Bogyo and W. A. Becker (1963), Exact confidence intervals for genetic heritability from parental half-sib correlations, Biometrics, 19, 494–496.CrossRefGoogle Scholar
  14. G. E. P. Box and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, Addison-Wesley, Reading, MA.MATHGoogle Scholar
  15. I. Bross (1950), Fiducial intervals for variance components, Biometrics, 6, 136–144.CrossRefGoogle Scholar
  16. C. Brown and F. Mosteller (1991), Components of variance, in D. C. Hoaglin, F. Mosteller, and J. W. Tukey, eds., Fundamentals of Exploratory Analysis of Variance, Wiley, New York, 193–251.CrossRefGoogle Scholar
  17. H. Brown and R. Prescott (1999), Applied Mixed Models in Medicine, Wiley, Chichester, UK.MATHGoogle Scholar
  18. K. A. Brownlee (1965), Statistical Theory and Methodology in Science and Engineering, 2nd ed., Wiley, New York.MATHGoogle Scholar
  19. M. G. Bulmer (1957), Approximate confidence limits for components of variance, Biometrika, 44, 159–167.MATHMathSciNetGoogle Scholar
  20. B. D. Burch and I. R. Harris (1999), Bayesian estimators of the intraclass correlation coefficient in the one-way random effects model, Comm. Statist. A Theory Methods, 28, 1247–1272.MATHMathSciNetCrossRefGoogle Scholar
  21. R. K. Burdick and F. A. Graybill (1992), Confidence Intervals on Variance Components, Marcel Dekker, New York.MATHGoogle Scholar
  22. J. M. Cameron (1951), Use of components of variance in preparing schedules for the sampling of baled wool, Biometrics, 7, 83–96.CrossRefGoogle Scholar
  23. G. Casella and R. L. Berger (2002), Statistical Inference, 2nd ed., Duxbury, Pacific Grove, CA.Google Scholar
  24. K. Chaloner (1987), A Bayesian approach to the estimation of variance components for the unbalanced one-way model, Technometrics, 29, 323–337.MathSciNetCrossRefGoogle Scholar
  25. Y. B. Chaubey (1984), On the comparison of some non-negative estimators of variance components for two models, Comm. Statist. B Simul. Comput., 13, 619–633.MathSciNetCrossRefGoogle Scholar
  26. S. C. Chow and J. Shao (1988), A new procedure for the estimation of variance components, Statist. Probab. Lett, 6, 349–355.MATHMathSciNetCrossRefGoogle Scholar
  27. Y. Chung and D. K. Dey (1998), Bayesian approach to estimation of intraclass correlation using reference prior, Comm. Statist. A Theory Methods, 27, 2241–2255.MATHMathSciNetCrossRefGoogle Scholar
  28. H. Cramér (1946), Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  29. D. H. Culver (1971), A Bayesian Analyis of the Balanced One-Way Variance Components Model, Ph.D. dissertation, University of Michigan, Ann Arbor, MI.Google Scholar
  30. D. H. Culver (1974), Use of Prior Information in the Estimation of Variance Components, Technical Report 74, Department of Statistics, University of Kentucky, Lexington, KY.Google Scholar
  31. H. E. Daniels (1939), The estimation of components of variance, J. Roy. Statist. Soc.Suppl, 6, 186–197.CrossRefMATHGoogle Scholar
  32. K. Das (1992), Improved estimation of the ratio of variance components for a balanced one-way random effects model, Statist. Probab. Lett., 13, 99–108.MATHMathSciNetCrossRefGoogle Scholar
  33. R. Das and B. K. Sinha (1987), Robust optimum invariant unbiased tests for variance componentsRobust optimum invariant unbiased tests for variance components, in T. Pukkila and S. Puntanen, eds., Proceedings of Second International Tampere Conference on Statistics, University of Tampere, Tampere, Finland, 317–342.Google Scholar
  34. O. L. Davies and P. L. Goldsmith, eds. (1972), Statistical Methods in Research and Production, 4th ed., Oliver and Boyd, Edinburgh.Google Scholar
  35. R. B. Davies (1980), The distribution of a linear combination of ?2 random variables, Appl. Statist, 29, 323–333.MATHCrossRefGoogle Scholar
  36. A. Donner (1986), A review of inference procedures for the intraclass correlation coefficient in the one-way random effects model, Internat. Statist. Rev., 54, 67–82.MATHMathSciNetCrossRefGoogle Scholar
  37. A. Donner and S. B. Bull (1983), Inferences concerning a common intraclass correlation coefficient, Biometrics, 39, 771–776.MATHCrossRefGoogle Scholar
  38. A. Donner and S. B. Bull (1984), A comparison of significance-testing procedures for parent-child correlations computed from familial data, Appl. Statist., 33, 278–284.CrossRefGoogle Scholar
  39. A. Donner and M. Eliasziw (1987), Sample size requirements for reliability studies, Statist. Med., 6, 441–448.CrossRefGoogle Scholar
  40. A. Donner and M. Eliasziw (1988), Confidence interval construction for parent-offspring correlations, Biometrics, 44, 379–384.MATHCrossRefGoogle Scholar
  41. A. Donner, M. Eliasziw, and M. Shoukri (1998), Review of inference procedures for the interclass coefficient with emphasis on applications to family studies, Genetic Epid., 15, 627–646.CrossRefGoogle Scholar
  42. A. Donner and J. J. Koval (1980), The large sample variance of an intraclass correlation, Biometrika, 67, 719–722.MATHMathSciNetCrossRefGoogle Scholar
  43. A. Donner and J. J. Koval (1983), A note on the accuracy of Fisher’s approximation to the large sample variance of an intraclass correlation, Comm. Statist. B Simul. Comput, 12, 443–449.CrossRefGoogle Scholar
  44. J. R. Donogue and L. M. Collins (1990), A note on the unbiased estimation of the intraclass correlation, Psychometrika, 55, 159–164.CrossRefGoogle Scholar
  45. W. Eliasziw and A. Donner (1990), Comparison of recent estimators of interclass correlation from familial data, Biometrics, 46, 391–398.MATHMathSciNetCrossRefGoogle Scholar
  46. W. Eliasziw and A. Donner (1995), Evaluation of a proposed modification to the pair-wise estimators of a parent-offspring correlation, Sankhyā, 57, 151–157.MATHMathSciNetGoogle Scholar
  47. R. C. Elston (1975), On the correlation between correlations, Biometrika, 62, 163–168.MathSciNetCrossRefGoogle Scholar
  48. W. T. Federer (1968), Non-negative estimators for components of variance, Appl. Statist, 17, 171–174.MathSciNetCrossRefGoogle Scholar
  49. T. S. Ferguson (1967), Mathematical Statistics: A Decision Theoretic Approach, Academic Press, New York.MATHGoogle Scholar
  50. R. A. Fisher (1921), On the “probable error” of a coefficient of correlation deduced from a small sample, Metron, 7-4, 1–32.Google Scholar
  51. R. A. Fisher (1925), Statistical Methods for Research Workers, Oliver and Boyd, London.Google Scholar
  52. J. L. Fleiss (1971), On the distribution of a linear combination of independent chi squares, J. Amer. Statist. Assoc., 66, 142–144.MATHMathSciNetCrossRefGoogle Scholar
  53. L. H. Gautschi (1959), Some remarks on Herbach’s paper, “Optimum nature of the F-test for Model II in the balanced case,” Ann. Math. Statist., 30, 960–963.MATHMathSciNetCrossRefGoogle Scholar
  54. D. W. Gaylor and F. N. Hopper (1969), Estimating the degrees of freedom for linear combinations of mean squares by Satterthwaite’s formula, Technomet-rics, 11, 691–706.CrossRefGoogle Scholar
  55. J. L. Gill and E. L. Jensen (1968), Probability of obtaining negative estimates of heritability, Biometrics, 24, 517–526.CrossRefGoogle Scholar
  56. F. A. Graybill (1954), On quadratic estimates of variance components, Ann. Math. Statist., 25, 367–372.MATHMathSciNetCrossRefGoogle Scholar
  57. F. A. Graybill (1961), An Introduction to Linear Statistical Models, Vol. I, McGraw-Hill, New York.MATHGoogle Scholar
  58. F. A. Graybill (1976), Theory and Application of the Linear Model, Duxbury, North Scituate, MA.MATHGoogle Scholar
  59. F. A. Graybill and R. A. Hultquist (1961), Theorems concerning Eisenhart’s Model II, Ann. Math. Statist., 32, 261–269.MATHMathSciNetCrossRefGoogle Scholar
  60. F. A. Graybill and C.-M. Wang (1980), Confidence intervals on nonnegative linear combinations of variances, J. Amer. Statist. Assoc., 75, 869–873.MathSciNetCrossRefGoogle Scholar
  61. F. A. Graybill and A. W. Wortham (1956), A note on uniformly best unbiased estimators for variance components, J. Amer. Statist. Assoc., 51, 266–268.MATHMathSciNetCrossRefGoogle Scholar
  62. D. J. Groggel, D. D. Wackerly, and P. V. Rao (1988), Nonparametric estimation in one-way random effects models, Comm. Statist. B Simul Comput., 17, 887–903.MATHCrossRefGoogle Scholar
  63. J. M. Hammersley (1949), The unbiased estimate and standard error of the interclass variance, Metron, 15, 189–205.MATHMathSciNetGoogle Scholar
  64. D. A. Harville (1969), Variance Component Estimation for the Unbalanced One-Way Random Classification, Technical Report ARL-69-0180, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH.Google Scholar
  65. M. J. R. Healy (1963), Fiducial limits for a variance component, J. Roy. Statist. Soc Ser. B, 25, 128–130.MATHMathSciNetGoogle Scholar
  66. W. C. Healy, Jr. (1961), Limits for a variance component with an exact confidence coefficient, Ann. Math. Statist, 32, 466–476.MATHMathSciNetCrossRefGoogle Scholar
  67. L. H. Herbach (1959), Properties of Model II type analysis of variance tests A: Optimum nature of the F-test for Model II in the balanced case, Ann. Math. Statist, 30, 939–959.MATHMathSciNetCrossRefGoogle Scholar
  68. B. M. Hill (1965), Inference about variance components in the one-way model, J. Amer. Statist. Assoc., 60, 806–825.MATHMathSciNetCrossRefGoogle Scholar
  69. B. M. Hill (1967), Correlated errors in the random model, J. Amer Statist. Assoc., 62, 1387–1400.MATHMathSciNetCrossRefGoogle Scholar
  70. K. Hinkelmann and O. Kempthorne (1994), Design and Analysis of Experiments, Vol. 1: Introduction to Experimental Design, Wiley, New York.Google Scholar
  71. R. R. Hocking, J. W. Green, and R. H. Bremer (1989), Variance component estimation with model-based diagnostics, Technometrics, 31, 227–240.CrossRefGoogle Scholar
  72. J. L. Hodges, Jr. and E. L. Lehmann (1951), Some applications of the Cramér-Rao inequality, in L. Lecam and J. Neyman, Proceedings Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 13–22.Google Scholar
  73. R. V. Hogg and A. T. Craig (1995), Introduction to Mathematical Statistics, 5th ed., Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  74. W. G. Howe (1974), Approximate confidence limits on the mean of X + Y where X and Y are two tabled independent random variables, J. Amer. Statist. Assoc., 69, 789–794.MATHMathSciNetGoogle Scholar
  75. P. L. Hsu (1938), On the best quadratic estimate of the variance, in J. Neyman and E. S. Pearson, eds., Statistical Research Memoirs, Vol. 2, Department of Statistics, University College, London, 91–104.Google Scholar
  76. W.-T. Huang and B. K. Sinha (1993), On optimum invariant tests of equality of intraclass correlation coefficients, Ann. Inst. Statist. Math., 45, 579–597.MATHMathSciNetCrossRefGoogle Scholar
  77. V S. Huzurbazar (1948), The likelihood equation, consistency and the likelihood function, Ann. Eugen., 14, 185–200.MathSciNetGoogle Scholar
  78. W. James and C. Stein (1961), Estimation with quadratic loss, in L. Lecam and J. Neyman, eds., Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 361–379.Google Scholar
  79. H. Jeffreys (1961), Theory of Probability, 3rd ed., Clarendon Press, Oxford, UK; 1st ed., 1939; 2nd ed., 1948.MATHGoogle Scholar
  80. S. Jeyaratnam and S. Panchapakesan (1986), Prediction intervals in balanced one-factor random model, Comm. Statist. A Theory Methods, 15, 161–170.MathSciNetGoogle Scholar
  81. K. J. Keen and M. S. Srivastava (1991), The asymptotic variance of the interclass correlation coefficient, Biometrika, 78, 225–228.MathSciNetCrossRefGoogle Scholar
  82. R. J. Kelly and T. Mathew (1993), Improved estimators of variance components with smaller probability of negativity, J. Roy. Statist. Soc Ser. B., 55, 897–911.MATHMathSciNetGoogle Scholar
  83. R. Khattree and D. N. Naik (1994), Estimation of interclass correlation under circular covarince, Biometrika, 81, 612–617.MATHMathSciNetCrossRefGoogle Scholar
  84. J. H. Klotz, R. C. Milton, and S. Zacks (1969), Mean square efficiency of estimators of variance components, J. Amer. Statist. Assoc., 64, 1383–1402.MATHMathSciNetCrossRefGoogle Scholar
  85. S. Konishi (1982), Asymptotic properties of estimators of interclass correlation from familial data, Ann. Inst. Statist. Math., 34, 505–515.MATHCrossRefGoogle Scholar
  86. S. Konishi (1985), Testing hypothesis about correlations from familial data, Biometrics, 41, 457–461.MathSciNetCrossRefGoogle Scholar
  87. S. Konishi and A. K. Gupta (1989), Testing the equality of several intraclass correlation coefficients, J. Statist. Plann. Inference, 21, 93–105.MATHMathSciNetCrossRefGoogle Scholar
  88. S. Konishi and C. G. Khatri (1990), Inferences on the interclass and intraclass correlation in multivariate familial data, Ann. Inst. Statist. Math. (Japan), 42, 561–580.MATHMathSciNetCrossRefGoogle Scholar
  89. H. W. Kuhn and A. W. Tucker (1951), Nonlinear programming, in L. Lecam and J. Neyman, eds., Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 481–492.Google Scholar
  90. J. Lee and A. I. Khuri (1999), Modeling the Power of an F-Test for a Variance Component Under Heterogeneous Error Variances, Technical Report 590, Department of Statistics, University of Florida, Gainesville, FL.Google Scholar
  91. P. M. Lee (1998), Bayesian Statistics, 2nd ed., Arnold, London.Google Scholar
  92. E. L. Lehmann (1983), Theory of Point Estimation, Wiley, New York; 2nd ed., 1998, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  93. E. L. Lehmann (1986), Testing Statistical Hypotheses, 2nd ed., Wiley, New York; reprint, 1997, Springer-Verlag, New York.MATHCrossRefGoogle Scholar
  94. W. Y. Loh (1986), Improved estimators for ratios of variance components, J. Amer. Statist. Assoc., 81, 699–702.MATHMathSciNetCrossRefGoogle Scholar
  95. T. J. Lorenzen and V. L. Anderson (1993), Design of Experiments: A No-Name Approach, Wiley, New York.MATHGoogle Scholar
  96. T.-F. C. Lu, F. A. Graybill, and R. K. Burdick (1988), Confidence intervals on a difference of expected mean squares, J. Statist. Plann. Inference, 18, 35–43.MATHMathSciNetCrossRefGoogle Scholar
  97. R. H. Lyles and L. L. Kupper (1998), UM VU estimators for the population mean and variance based on random effects models for lognormal data, Comm. Statist. A Theory Methods, 27, 795–818.MATHMathSciNetCrossRefGoogle Scholar
  98. T. Mathew, B. K. Sinha, and B. C. Sutradhar (1992), Nonnegative estimation of variance components in general balanced mixed models, in A. Md. E. Saleh, ed., Nonparametric Statistics and Related Topics, Elsevier, New York, 281–295.Google Scholar
  99. R. G Miller, Jr. (1986), Beyond ANOVA: Basics of Applied Statistics, Wiley, New York; reprint, 1997, Chapman and Hall, London.Google Scholar
  100. S. Moriguti (1954), Confidence limits for a variance component, Rep. Statist. Appl. Res. (JUSE), 3, 7–19.Google Scholar
  101. S. M. Mostafa and R. Ahmad (1986), Confidence intervals for variance components in balanced random models when errors are independent and related through an autoregressive and related series, Statistica, 46, 367–377.MathSciNetGoogle Scholar
  102. G. R. Murdock and W. O. Willford (1977), Tables for obtaining optimal confidence intervals involving the chi-square distribution, in D. B. Owen and R. E. Odeh, Selected Tables in Mathematical Statistics, Vol. 5, American Mathematical Society, Providence, 205–230.Google Scholar
  103. D. N. Naik and R. Khatree (1994), Testing for random effects in analysis of covariance model, J. Statist. Plann. Inference, 38, 381–387.MATHMathSciNetCrossRefGoogle Scholar
  104. S. T. M. Naqvi, (1969), Inference for Components of Variance Models, Ph.D. dissertation, Iowa State University, Ames, IA.Google Scholar
  105. R. A. Neider (1954), The interpretation of negative components of variance, Biometrika, 41, 544–548.MathSciNetGoogle Scholar
  106. I. Olkin and J. W. Pratt (1958), Unbiased estimation of certain correlation coefficients, Ann. Math. Statist, 29, 201–211.MathSciNetCrossRefGoogle Scholar
  107. E. C. Olson and R. L. Miller (1958), Morphological Integration, University of Chicago Press, Chicago.Google Scholar
  108. J. L. Palmer and L. D. Broemeling (1990), Acomparison of Bayes and maximum likelihood estimation of the intraclass correlation, Comm. Statist. A Theory Methods, 19, 953–975.CrossRefGoogle Scholar
  109. S. Portnoy (1971), Formal Bayes estimation with application to a random effects model, Ann. Math. Statist, 42, 1379–1402.MATHMathSciNetCrossRefGoogle Scholar
  110. V. T. Prabhakaran and J. P. Jain (1987a), A procedure for obtaining the probability of negative estimates of heritability from sib analysis, Statistician, 36, 409–411.CrossRefGoogle Scholar
  111. V. T. Prabhakaran and J. P. Jain (1987b), Probability of obtaining negative estimates of heritability from full-sib analysis under a general model of gene action, Biometrical J., 29, 461–469.MathSciNetCrossRefGoogle Scholar
  112. J. W. Pratt, H. Raiffa, and R. Schaifer (1965), Introduction to Statistical Decision Theory, McGraw-Hill, New York.Google Scholar
  113. S. J. Press (1966), Linear combinations of non-central chi-square variates, Ann. Math. Statist., 37, 480–487.MATHMathSciNetCrossRefGoogle Scholar
  114. A. C. Rencher and R. G. Krutchkoff (1975), Some empirical estimators allowing for varying error variances, Biometrika, 62, 643–650.MATHMathSciNetCrossRefGoogle Scholar
  115. J. Robinson (1965), The distribution of a general quadratic form in normal variables, Austral. J. Statist, 7, 110–114.MathSciNetCrossRefGoogle Scholar
  116. D. S. Robson (1965), On the Inadmissibility of Non-Negative Maximum Likelihood Estimators of the “Between-Group” Variance Component, Mim. Ser. Paper BU-179-M, Biometrics Unit, Cornell University, Ithaca, NY.Google Scholar
  117. B. Rosner (1979), Maximum likelihood estimation of interclass correlations, Biometrika, 66, 533–538.MATHCrossRefGoogle Scholar
  118. B. Rosner (1982), On the estimation and testing of interclass correlations: The general case of multiple replicates for each variable, Amer J. Epidemiology, 116, 722–730.Google Scholar
  119. B. Rosner, A. Donner, and C. H. Hennekens (1977), Estimation of interclass correlation from familial data, Appl. Statist, 26, 179–187.CrossRefGoogle Scholar
  120. B. Rosner, A. Donner, and C. H. Hennekens (1979), Significance testing of interclass correlation from familial data, Biometrics, 35, 461–471.MATHMathSciNetCrossRefGoogle Scholar
  121. T. S. Russell and R. A. Bradley (1958), One-way variances in the two-way classification, Biometrika, 45, 111–129.MATHGoogle Scholar
  122. J. Sacks (1963), Generalized Bayes solutions in estimation problems, Ann. Math. Statist, 34, 751–768.MATHMathSciNetCrossRefGoogle Scholar
  123. H. Sahai and W. O. Thompson (1973), Non-negative maximun likelihood estimators of variance components in a simple linear model, Amer. Statist, 27, 112–113.CrossRefGoogle Scholar
  124. V. A. Samaranayake and L. J. Bain (1988), A confidence interval for treatment component of variance with applications to differences in means of two exponential distributions, J. Statist. Comput. Simul, 29, 317–332.MATHMathSciNetCrossRefGoogle Scholar
  125. F. E. Satterthwaite (1941), Synthesis of variance, Psychometrika, 6, 309–316.MATHMathSciNetCrossRefGoogle Scholar
  126. F. E. Satterthwaite (1946), An approximate distribution of estimates of variance components, Biometrics Bull, 2, 110–114.CrossRefGoogle Scholar
  127. L. J. Savage (1961), The Subjective Basis of Statistical Practice, technical report, Department of Statistics, University of Michigan, Ann Arbor, ML.Google Scholar
  128. H. Scheffé (1959), The Analysis of Variance, Wiley, New York.MATHGoogle Scholar
  129. S. R. Searle, G. Casella, and C. E. McCulloch (1992), Variance Components, Wiley, New York.MATHCrossRefGoogle Scholar
  130. J. F. Seely (1980), Some remarks on exact confidence intervals for positive linear combinations of variance components, J. Amer. Statist Assoc., 75, 372–374.MATHMathSciNetCrossRefGoogle Scholar
  131. J. F. Seely and Y. Lee (1994), A note on the Satterthwaite confidence interval for a variance component, Comm. Statist. A Theory Methods, 23, 859–869.MATHMathSciNetCrossRefGoogle Scholar
  132. R. A. Singhal (1983), Effect of non-normality on the estimation of functions of variance components, J. Indian Soc. Agricultural Statist., 35-2, 89–98.Google Scholar
  133. R. A. Singhal (1986), Comparison of variance components for non-normal samples, Sankhyā Ser. B, 48, 163–175.MATHMathSciNetGoogle Scholar
  134. R. A. Singhal (1987a), Confidence intervals on functions of components of variance in samples from moderate non-normal populations, J. Indian Soc. Agricultural Statist., 39, 1–8.Google Scholar
  135. R. A. Singhal (1987b), Confidence limits on heritability under non-normal variations, Biometrics J., 29, 571–578.MATHCrossRefGoogle Scholar
  136. R. A. Singhal and J. P. Jain (1986), Estimation of heritability for samples from non-normal situations, Biometrical J., 5, 629–636.CrossRefGoogle Scholar
  137. R. A. Singhal, H. Sahai, and M. M. Ojeda (1999), Effects of nonnormality on confidence intervals for between group variance component in one-way random model, J. Appl. Statist. Sci., 8, 115–127.MATHMathSciNetGoogle Scholar
  138. R. A. Singhal and C. Singh (1983a), Moments of inter-group variance component estimator in samples from a non-normal universe, Sankhyā Ser. B, 45, 20–29.MATHMathSciNetGoogle Scholar
  139. R. A. Singhal and C. Singh (1983b), Distribution of sums of squares in samples from a non-normal universe: Balanced one-way random model, J. Indian Statist. Assoc., 21, 125–131.Google Scholar
  140. R. A. Singhal and C. Singh (1984), Distribution of the variance ratio test in a non-normal random effects model, Sankhyä Ser. B, 46, 29–35.MATHMathSciNetGoogle Scholar
  141. C. G. Small, J. Wang, and Z. Yang (2000), Eliminating multiple root problems in estimation, Statist. Sci., 15, 313–341.MathSciNetCrossRefGoogle Scholar
  142. C. A. B. Smith (1956), On the estimation of intraclass correlation, Ann. Human Genetics, 21, 363–373.CrossRefGoogle Scholar
  143. D. W. Smith and L. W. Murray (1984), An alternative to Eisenhart’s Model II and mixed model in the case of negative variance estimates, J. Amer. Statist. Assoc., 79, 145–151.MathSciNetCrossRefGoogle Scholar
  144. G. W. Snedecor and W. G. Cochran (1989), Statistical Method, 8th ed., Iowa State University Press, Amer, IA; 6th ed., 1967; 7th ed., 1980.Google Scholar
  145. R. D. Snee (1983), Graphical analysis of process variation studies, J. Qual. Tech., 15, 76–88.Google Scholar
  146. R. R. Sokal and F. J. Rohlf (1995), Biometry, 3rd ed., W. H. Freeman, New York; 1st ed., 1969; 2nd ed., 1981.Google Scholar
  147. M. S. Srivastava (1984), Estimation of interclass correlations in familial data, Biometrika, 71, 177–185.MATHMathSciNetCrossRefGoogle Scholar
  148. M. S. Srivastava and R. S. Katapa(1986), Comparison of estimators of interclass and intraclass correlations from familial data, Canad. J. Statist, 14, 29–42.MATHMathSciNetCrossRefGoogle Scholar
  149. M. S. Srivastava and K. J. Keen (1988), Estimation of the interclass correlation coefficient, Biometrika, 75, 731–740.MATHMathSciNetCrossRefGoogle Scholar
  150. M. S. Srivastava, K. J. Keen, and R. S. Katapa (1988), Estimation of interclass and intraclass correlation in multivariate familial data, Biometrics, 44, 141–150.MATHMathSciNetCrossRefGoogle Scholar
  151. C. Stein (1964), Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean, Ann. Inst. Statist. Math. (Japan), 16, 155–160.CrossRefMATHGoogle Scholar
  152. M. Stone and B. G. F. Springer (1965), A paradox involving quasi-prior distributions, Biometrika, 52, 623–627.MATHMathSciNetGoogle Scholar
  153. W. A. Thompson, Jr. (1961), Negative estimates of variance components: An introduction, Bull. Internat. Statist. Inst, 34, 1–4.Google Scholar
  154. W. A. Thompson, Jr. (1962), The problem of negative estimates of variance components, Ann. Math. Statist, 33, 273–289.MATHMathSciNetCrossRefGoogle Scholar
  155. W. A. Thompson, Jr. and J. R. Moore (1963), Non-negative estimates of variance components, Technometrics, 5, 441–450.MATHCrossRefGoogle Scholar
  156. W. O. Thompson and R. L. Anderson (1975), A comparison of designs and estimators for the two-stage nested random model, Technometrics, 17, 37–44.MATHCrossRefGoogle Scholar
  157. G. C. Tiao and W. Y. Tan (1965), Bayesian analysis of random effects models in the analysis of variance I: Posterior distribution of variance components, Biometrika, 52, 37–53.MATHMathSciNetGoogle Scholar
  158. G. C. Tiao and W. Y. Tan (1966), Bayesian analysis of random effects models in the analysis of variance II: Effect of autocorreleted errors, Biometrika, 53, 477–495.MATHMathSciNetGoogle Scholar
  159. N. Ting, R. K. Burdick, F. A. Graybill, S. Jeyaratnam, and T.-F. C. Lu (1990), Confidence intervals on linear combinations of variance components that are unrestricted in sign, J. Statist. Comput Simul, 35, 135–143.MathSciNetCrossRefGoogle Scholar
  160. J. W. Tukey (1951), Components in regression, Biometrics, 7, 33–69.CrossRefGoogle Scholar
  161. J. W. Tukey (1956), Variances of variance components I: Balanced designs, Ann. Math. Statist, 27, 722–736.MATHMathSciNetCrossRefGoogle Scholar
  162. J. W. Tukey (1957), Variances of variance components III: Third moment in balanced single classification, Ann. Math. Statist, 28, 378–384.MathSciNetCrossRefGoogle Scholar
  163. R. Velu and M. B. Rao (1990), Estimation of parent-offspring correlation, Biometrika, 77, 557–562.MATHMathSciNetCrossRefGoogle Scholar
  164. W. Venables and A. T. James (1978), Interval estimates for variance compo-nents, Canad. J. Statist., 6, 103–111.MATHMathSciNetCrossRefGoogle Scholar
  165. L. R. Verdooren (1982), How large is the probability for the estimate of a variance component to be negative, Biometrics J., 24, 339–360.MATHMathSciNetCrossRefGoogle Scholar
  166. C. M. Wang (1990), On ranges of confidence coefficients for confidence intervals on variance components, Comm. Statist. B Simul. Comput., 19, 1165–1178.MATHGoogle Scholar
  167. W. Y. Wang (1966), The Distribution and Moments of Some Variance Components Estimators, Mim. Ser. Paper BU-218-M, Biometrics Unit, Cornell University, Ithaca, NY.Google Scholar
  168. W. Y Wang (1967), A comparison of several variance component estimators, Biometrika, 54, 301–305.MATHMathSciNetGoogle Scholar
  169. S. Weerahandi (1995), Exact Statistical Methods for Data Analysis, Springer-Verlag, New York.CrossRefGoogle Scholar
  170. B. L. Welch (1956), On linear combinations of several variables, J. Amer. Statist. Assoc., 51, 132–148.MATHMathSciNetCrossRefGoogle Scholar
  171. J. S. Williams (1962), A confidence interval for variance components, Biometrika, 49, 278–281.MATHMathSciNetGoogle Scholar
  172. B. J. Winer, D. R. Brown, and K. M. Michels (1991), Statistical Principles in Experimental Design, 3rd ed., McGraw-Hill, New York.Google Scholar
  173. K. Ye (1994), Bayesian reference prior analysis on the ratio of variances for the balanced one-way random effect model, J. Statist. Plann. Inference, 41, 267–280.MATHMathSciNetCrossRefGoogle Scholar
  174. S. Zacks (1970), Bayes equivariant estimators of variance components, Ann. Inst. Statist. Math. (Japan), 22, 27–40.MATHMathSciNetCrossRefGoogle Scholar
  175. J. Zidek (1969), A representation of Bayes invariant procedures in terms of Haar measure, Ann. Inst. Statist. Math. (Japan), 21, 291–308.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 2004

Authors and Affiliations

  • Hardeo Sahai
    • 1
  • Mario Miguel Ojeda
    • 2
  1. 1.Center for Addiction Studies School of MedicineUniversidad Central del CaribeBayamon, Puerto RicoUSA
  2. 2.Económico AdministrativaUniversidad VeracruzanaKalapa, VeracruzMéxico

Personalised recommendations