Skip to main content

Abstract

The nature and magnitude of variability of repeated observations plays a fundamental role in many fields of scientific investigation. For example, questions such as, the determination of sample size to estimate an effect with a given precision in a factorial experiment, estimation of standard errors of sample estimates in a complex survey, and selection of breeding programs to estimate genetic parameters, require the knowledge of the nature and magnitude of variability of measurement errors. The analysis of variance as understood and practiced today is concerned with the determination of sources and magnitude of variability introduced by one or more factors or stages of a process. The methodology was developed primarily by R. A. Fisher during the 1920s, who defined it as “separation of the variance ascribable to one group of causes from the variance ascribable to other groups.” Fisher is also credited with introducing the terms “variance” and “analysis of variance” into statistics. Since its introduction by Fisher (1925), the analysis of variance has been the most widely used statistical tool to obtain tests of significance of treatment effects. The technique has been developed largely in connection with the problems of agricultural experimentation. Scheffé (1959, p. 3) gives the following definition of the analysis of variance:

“The analysis of variance is a statistical technique for analyzing measurements depending on several kinds of effects operating simultaneously, to decide which kinds of effects are important and to estimate the effects. The measurements or observations may be in an experimental science like genetics or nonexperimental one like astronomy.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • H. Ahrens (1974), Estimation of multivariate components of variance, Math. Balkaica, 43, 13–15.

    MathSciNet  Google Scholar 

  • G. B. Airy (1861), On the Algebraical and Numerical Theory of Errors of Observations and the Combinations of Observations, MacMillan, London.

    Google Scholar 

  • Y. Amemiya (1985), What should be done when an estimated between group covariance matrix is nonnegative definite?, Amer Statist, 39, 112–117.

    Google Scholar 

  • Y. Amemiya (1986), On the multivariate variance components model, in ASA Proceedings of the Business and Economic Statistics Section, American Statistical Association, Alexandria, VA, 411–414.

    Google Scholar 

  • B. M. Anderson, T. W. Anderson, and I. Olkin (1986), Maximum likelihood estimators and likelihood ratio criterion in multivariate components of variance, Ann. Statist., 14, 405–417.

    MathSciNet  Google Scholar 

  • R. L. Anderson (1947), Use of variance components in the analysis of hog prices in two markets, J. Amer. Statist. Assoc., 42, 612–634.

    Google Scholar 

  • R. L. Anderson (1960), Use of variance component analysis in the interpretation of biological experiments, Part 1, Bull. Internat. Statist. Inst., 37, 1–22.

    Google Scholar 

  • R. L. Anderson (1975), Designs and estimators for variance components, in J. N. Srivastava, ed., Statistical Design and Linear Model, North-Holland, Amsterdam, 1–30.

    Google Scholar 

  • R. L. Anderson (1981), Recent developments in designs and estimators for variance components, in M. Csörgö, D. A. Dawson, J. N. K. Rao, and A. K. Md. E. Saleh, eds. Statistics and Related Topics, North-Holland, Amsterdam, 3–22.

    Google Scholar 

  • T. W. Anderson (1985), Components of variance in MANOVA, in R. R. Krish-naiah, ed., Multivariate Analysis IV, North-Holland, Amsterdam, 1–8.

    Google Scholar 

  • D. J. Balding, M. Bishop, and C. Cannings, eds. (2001), Handbook of Statistical Genetics, Wiley, Chichester, UK.

    Google Scholar 

  • K. A. Brownlee (1953), Industrial Experimentation, Chemical Publishing Company, New York.

    Google Scholar 

  • R. K. Burdick, and F. A. Graybill (1988), The present status of confidence interval estimation on variance components in balanced and unbalanced random models, Comm. Statist. A Theory Methods, 17, 1165–1195.

    MathSciNet  Google Scholar 

  • R. K. Burdick and F. A. Graybill (1992), Confidence Intervals on Variance Components, Marcel Dekker, New York.

    Google Scholar 

  • J. H. Bywaters (1937), The hereditary and environmental portions of the variance in weaning weights of Poland-China pigs, Genetics, 22, 457–468.

    Google Scholar 

  • J. A. Calvin (1993), Least squares estimation of covariance matrices in balanced multivariate variance components models using an EM algorithm, Biometrics, 49, 691–701.

    MathSciNet  Google Scholar 

  • J. A. Calvin and R. L. Dykstra (1991), Maximum likelihood estimation of a set of covariance matrices under lower order restrictions with applications to balanced multivariate variance components models, Ann. Statist, 19, 850–869.

    MathSciNet  Google Scholar 

  • J. A. Calvin and R. L. Dykstra (1992), An algorithm for restricted maximum likelihood estimation in balanced multivariate variance components models, J. Statist. Comput Simul., 40, 233–246.

    Google Scholar 

  • J. A. Calvin and R. L. Dykstra (1995), REML estimation of covariance matrices with restricted parameter space, J. Amer. Statist. Assoc., 90, 321–329.

    MathSciNet  Google Scholar 

  • J. M. Cameron (1951), Use of components of variance in preparing schedules for the sampling of baled wool, Biometrics, 7, 83–96.

    Google Scholar 

  • S. C. Chow and S. C. Wang (1994), On the estimation of variance components in stability analysis, Comm. Statist. A Theory Methods, 23, 289–303.

    MathSciNet  Google Scholar 

  • W. G. Cochran (1939), The use of the analysis of variance in enumeration by sampling, J. Amer. Statist. Assoc., 34, 492–510.

    Google Scholar 

  • D. R. Cox (1998), Components of variance: A miscellany, Statist. Methods Med. Res., 7, 3–12.

    Google Scholar 

  • D. R. Cox and P. J. Solomon (2002), Components of Variance, Chapman and Hall-CRC, Boca Raton, FL.

    Google Scholar 

  • S. L. Crump (1946), The estimation of variance components in analysis of variance, Biometrics Bull., 2, 7–11.

    Google Scholar 

  • H. E. Daniels (1939), The estimation of components of variance, J. Roy. Statist. Soc. Suppl., 6, 186–197.

    Google Scholar 

  • K. Das (1996), Improved estimation of covariance matrices in balanced hierarchical multivariate variance components models, Math. Oper. Statist. Ser. Statist., 28, 73–82.

    Google Scholar 

  • R. Das and B. K. Sinha (1988), Optimum invariant tests in random MANOVA models, Canad. J. Statist., 16, 193–200.

    MathSciNet  Google Scholar 

  • G. E. Dickerson (1942), Experimental design for testing inbred lines of swine, J. Animal Sci., 1, 326–341.

    Google Scholar 

  • C. Eisenhart (1947), The assumptions underlying the analysis of variance, Biometrics, 3, 1–21.

    MathSciNet  Google Scholar 

  • H. Fairfield-Smith (1936), A discriminant function for plant selection, Ann. Eugen. (London), 7, 240–260.

    Google Scholar 

  • R. A. Fisher (1918), The correlation between relatives on the supposition of Mendelian law on inheritance, Trans. Roy. Soc Edinburgh, 52, 399–433.

    Google Scholar 

  • R. A. Fisher (1925), Statistical Methods for Research Workers, Oliver and Boyd, London.

    Google Scholar 

  • R. A. Fisher (1935), Contribution to the discussion of a paper by J. Neyman, J. Roy. Statist. Soc. Suppl., 2, 154–154.

    Google Scholar 

  • E. Gori and G. M. Marchetti (1990), Components of variance models for small area estimation, in Procedings of the Italian Statistical Society, Vol. 2, Italian Statistical Society, Rome, 223–230.

    Google Scholar 

  • C. R. Henderson (1984), Applications of Linear Models in Animal Breeding, University of Guelph, Guelph, ON, Canada.

    Google Scholar 

  • C. R. Henderson (1986), Recent developments in variance and covariance estimation, J. Animal Sci., 63, 208–216.

    Google Scholar 

  • H. O. Hetzer, G E. Dickerson, and J. H. Zeller (1944), Heritability of type in Poland China swine as evaluated by scoring, J. Animal Sci., 3, 390–398.

    Google Scholar 

  • R. R. Hocking (1989), Recent developments in variance components estimation, in G. A. Milliken and J. R. Schwenke, eds., Proceedings of the Kansas State University Conference on Applied Statistics in Agriculture, Department of Statistics, Kansas State University, Manhattan, KS, 1–9.

    Google Scholar 

  • J. L. Hopper (1993), Variance components for statistical genetics: Applications in medical research to characteristics related to diseases and health, Statist. Methods Med. Res., 2, 199–223.

    Google Scholar 

  • R. Hultquist (1988), Variance components, in S. Kotz and N. L. Johnson, Encyclopedia of Statistical Sciences, Vol. 9, Wiley, New York, 467–472.

    Google Scholar 

  • R. W. B. Jackson (1939), Reliability of mental test, Brit. J. Psychol., 29, 267–287.

    Google Scholar 

  • O. Kempthorne (1975), Fixed and mixed random models in the analysis of variance, Biometrics, 31, 473–486.

    MathSciNet  Google Scholar 

  • O. Kempthorne and L. Folks (1971), Probability, Statistics and Data Analysis, Iowa State University Press, Ames, IA.

    Google Scholar 

  • C. G. Khatri (1979), Minimum variance quadratic unbiased estimate of a linear function of variances and covariances under MANOVA model, J. Statist. Plann. Inference, 3, 299–303.

    MathSciNet  Google Scholar 

  • A. I. Khuri (2000), Designs for variance components estimation: Past and present, Internat. Statist. Rev., 68, 311–322.

    Google Scholar 

  • A. I. Khuri, T. Mathew, and B. K. Sinha (1998), Statistical Tests for Mixed Linear Models, Wiley, New York.

    Google Scholar 

  • A. I. Khuri and H. Sahai (1985), Variance components analysis: A selective literature survey. Internat. Statist. Rev., 53, 279–300.

    MathSciNet  Google Scholar 

  • J. Kleffé (1977), Optimal estimation of variance components: A survey. Sankhyā Ser. B, 39, 211–244.

    Google Scholar 

  • J. Kleffé (1980), On recent progress of MINQUE theory: Nonnegative estimation, consistency, asymptotic normality and explicit formulae, Math. Oper. Ser. Statist., 11, 563–588.

    Google Scholar 

  • J. Klotz and J. Putter (1969), Maximum likelihood estimation for multivariate covariance components for the balanced one-way layout, Ann. Math. Statist., 40, 1100–1105.

    MathSciNet  Google Scholar 

  • B. Knapp, Jr. and A. W. Nordskog (1946), Heritability of growth and efficiency of beef cattle, J. Animal Sci., 5, 62–70.

    Google Scholar 

  • P. R. Krishnaiah, ed. (1980), Handbook of Statistics, Vol. 1: Analysis of Variance, North-Holland, Amsterdam.

    Google Scholar 

  • D. Kronborg, B. Hansen, and P. Aaby (1992), Analysis of the incubation period for measles in the epidemic in Greenland using a variance component model, Statist. Med., 11, 579–590.

    Google Scholar 

  • T. Kubokawa (1995), Estimation of variance components in mixed linear models, J. Multivariate Anal, 53, 210–236.

    MathSciNet  Google Scholar 

  • K. Kussmaul and R. L. Anderson (1967), Estimation of variance components in two-stage nested designs with composite samples, Technometrics, 9, 373–389.

    MathSciNet  Google Scholar 

  • L. R. LaMotte (1983), Fixed-random-and mixed-effects models, in S. Kotz and N. L. Johnson, Encyclopedia of Statistical Sciences, Wiley, New York, 137–141.

    Google Scholar 

  • N. F. Laubscher (1996), A variance component model for statistical process control, South African Statist. J., 30, 27–47.

    Google Scholar 

  • G. H. Lemon (1977), Factors for one-sided tolerance limits for balanced oneway ANOVA random effects model, J. Amer. Statist. Assoc., 72, 676–680.

    Google Scholar 

  • N. T. Longford (1990), Multivariate variance component analysis: An application in the test development, J. Educational Statist, 15, 91–112.

    Google Scholar 

  • J. L. Lush, H. O. Hetzer, and C. C. Culbertson (1934), Factors affecting birth weights of swines, Genetics, 19, 329–343.

    Google Scholar 

  • J. L. Lush and A. E. Molln (1942), Litter Size and Weight as Permanent Characteristics of Sows, USDA Technical Bulletin 836, U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • L. C. MacLean and K. L. Weldon (1996), Estimating multivariate random effects without replication, Comm. Statist. A Theory Methods, 25, 1447–1469.

    MathSciNet  Google Scholar 

  • J. D. Malley (1986), Optimal Unbiased Estimation of Variance Components, Lecture Notes in Statistics 39, Springer-Verlag, New York.

    Google Scholar 

  • T. Mathew (1989), ?ANOVA in the multivariate components of variance model, J. Multivariate Anal, 29, 30–38.

    MathSciNet  Google Scholar 

  • T. Mathew, A. Niyogi, and B. K. Sinha (1994), Improved nonnegative estimation of variance components in balanced multivariate mixed models, J. Multivariate Anal, 51, 83–101.

    MathSciNet  Google Scholar 

  • R. W. Mee and D. B. Owen (1983), Improved factors for one-sided tolerance limits for balanced one-way ANOVA random model, J. Amer. Statist. Assoc., 78, 901–905.

    Google Scholar 

  • K. Meyer (1985), Maximum likelihood estimation of variance components for a multivariate mixed model with equal design matrices, Biometrics, 41, 153–165.

    MathSciNet  Google Scholar 

  • J. Neyman (with the cooperation of K. Iwaszkiewicz and St. Kolodtziejczyk) (1935), Statistical problems in agricultural experimentation, J. Roy. Statist. Soc.Suppl., 2, 107–154.

    Google Scholar 

  • V. G. Panse (1946), An application of discriminant function for selection in poultry, J. Genetics (London), 47, 242–253.

    Google Scholar 

  • C. R. Rao (1947), General methods of analysis for incomplete block designs, J. Amer. Statist. Assoc., 42, 541–561.

    MathSciNet  Google Scholar 

  • C. R. Rao and J. Kleffé (1988), Estimation of Variance Components and Applications, North-Holland, Amsterdam.

    Google Scholar 

  • P. S. R. S. Rao (1997), Variance Components Estimation: Mixed Models, Methodologies and Applications, Chapman and Hall, London.

    Google Scholar 

  • P. S. R. S. Rao and C. E. Heckler (1998), Multivariate one-way random effects model, Amer. J. Math. Sci., 18, 119–128.

    MathSciNet  Google Scholar 

  • S. Remadi and Y. Amemiya (1994), Asympotic properties of the estimators for multivariate components of variance, J. Multivariate Anal, 49, 110–131.

    MathSciNet  Google Scholar 

  • D. L. Robinson (1984), A study of sequential variety selection system, J. Agricultural Sci. (Cambridge), 102, 119–126.

    Google Scholar 

  • G. K. Robinson (1998), Variance components, in P. Armitage and T. Colton, eds., Encyclopedia of Biostatistics, Vol. 6, Wiley, New York, 4713–4719.

    Google Scholar 

  • C. D. Russell, H. J. Deblanc, Jr., and H. N. Wagner (1974), Components of variance in laboratory quality-control, Hopkins Med. J., 135, 344–357.

    Google Scholar 

  • H. Sahai (1979), A bibliography on variance components, Internat. Statist Rev., 47, 177–222.

    MathSciNet  Google Scholar 

  • H. Sahai, A. Khuri, and C. H. Kapadia (1985), A second bibliography on variance components, Comm. Statist. A Theory Methods, 14, 63–115.

    MathSciNet  Google Scholar 

  • H. Sahai and A. Khurshid (2004), A bibliography on variance components: An introduction and an update: 1984-2002, Statist. Appl, to appear.

    Google Scholar 

  • V. A. Samaranayake and J. K. Patel (1999), Variance components, confidence intervals for, in S. Kotz, C. B. Read, and D. L. Banks, eds., Encylopedia of Statistical Sciences, Update Vol. 3, Wiley, New York, 699–705.

    Google Scholar 

  • H. Scheffé (1956), Alternative models for the analysis of variance, Ann. Math. Statist., 27, 251–271.

    MathSciNet  Google Scholar 

  • H. Scheffé (1959), The Analysis of Variance, Wiley, New York.

    Google Scholar 

  • S. R. Searle (1989), Variance components: Some history and summary account of estimation methods, J. Animal Breeding Genetics, 106, 1–29.

    Google Scholar 

  • S. R. Searle (1995), An overview of variance components estimation, Metrika, 42, 215–230.

    MathSciNet  Google Scholar 

  • S. R. Searle, G. Casella, and C. E. McCulloch (1992), Variance Components, Wiley, New York.

    Google Scholar 

  • R. H. Sharpe and C. H. van Middelem (1955), Application of variance components to horticultural problems with special reference to a parathion residue study, Proc. Amer. Soc. Horticultural Sci, 66, 415–420.

    Google Scholar 

  • R. A. Singhal, C. B. Tiwari, and H. Sahai (1988), A selected and annotated bibliography on the robustness studies to non-normality in variance components models, J. Japan. Statist. Soc, 18, 195–206.

    MathSciNet  Google Scholar 

  • P. J. Solomon (1989), On components of variance and modeling exceedances over a threshold, Austral. J. Statist, 31, 18–24.

    Google Scholar 

  • P. J. Solomon, ed. (1998), Five papers on variance components in medical research, Statist Methods Med. Res., 7, 1–84.

    Google Scholar 

  • G. F. Sprague and L. A. Tatum (1942), General vs. specific combining ability in single crosses of corn, J. Amer. Soc. Agronomy, 34, 923–932.

    Google Scholar 

  • M. S. Srivastava and T. Kubokawa (1999), Improved nonnegative estimation of multivariate components of variance, Ann. Statist, 27, 2008–2032.

    MathSciNet  Google Scholar 

  • J. A. C. Sterne, N. W. Johnson, J. M. A. Wilton, S. Joyston-Bechal, and F. C. Smales (1988), Variance components analysis of data from periodontal research, J. Periodontal Res., 23, 148–153.

    Google Scholar 

  • H. H. Stonaker and J. L. Lush (1942), Heritability of conformation in Poland-China swine as evaluated by scoring, J. Animal Sci., 1, 99–105.

    Google Scholar 

  • M. Talbot (1984), Yield variability of crop varieties in the UK, J. Agricultural Sci. (Cambridge), 102, 315–321.

    Google Scholar 

  • L. H. C. Tippett (1931), The Methods of Statistics, 1st ed., Williams and Norgate, London; 4th ed., Wiley, New York, 1952.

    Google Scholar 

  • B. L. Welch (1936), The specification of rules for rejecting too variable a product, with particular reference to an electric lamp problem, J. Roy. Statist Soc. Suppl., 3, 29–48.

    Google Scholar 

  • M. T. Wesolowska-Janczarek (1984), Estimation of covariance matrices in un-balanced random and mixed multivariate models, Biometrics J., 26, 665–674.

    MathSciNet  Google Scholar 

  • M. B. Wilk and O. Kempthorne (1955), Fixed, mixed, and random models, J. Amen Statist. Assoc., 50, 1144–1167; corrigenda, 51, 652.

    Google Scholar 

  • G. Z. Williams, D. S. Young, M. R. Stein, and E. Cotlove (1970), Biologic and analytic components of variation in long-term studies of serum constituents in normal subjects, Parts I, II, and III, Clinical Chem., 16, 1016.

    Google Scholar 

  • E. Yashchin (1994), Monitoring variance components, Technometrics, 36, 379–393.

    Google Scholar 

  • F. Yates (1940), The recovery of interblock information in balanced incomplete block designs, Ann. Eugen. (London), 10, 317–325.

    Google Scholar 

  • F. Yates (1977), Contribution to the discussion of the paper by J. A. Neider, J. Roy. Statist. Soc. Sen. A, 140, 48–76.

    Google Scholar 

  • F. Yates and I. Zacopanay (1935), The estimation of the efficiency of sampling, with special reference to sampling in cereal experiments, J. Agricultural Sci. (Cambridge), 25, 545–577.

    Google Scholar 

  • W. J. Youden and A. Mehlich (1937), Selection of efficient methods for soil sampling, Contr. Boyce Thompson Inst., 9, 59–70.

    Google Scholar 

  • D. S. Young, E. K. Harris, and E. Cotlove (1971), Biologic and analytic components of variation in long-term studies of serum constituents in normal subjects, Part IV, Clinical Chem., 17, 403.

    Google Scholar 

  • J. Zhaorong, K. A. Matewice, and C. A. McGilchrist (1992), Variance components for discordances, Math. Biol. Sci., 11, 119–124.

    Google Scholar 

  • L. Zhou and T. Mathew (1993), Hypothesis tests for variance components in some multivariate mixed models, J. Statist. Plann. Inference, 37, 215–227.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sahai, H., Ojeda, M.M. (2004). Introduction. In: Analysis of Variance for Random Models. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8168-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8168-5_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6470-5

  • Online ISBN: 978-0-8176-8168-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics