Advertisement

The Hamilton-Jacobi Method of Integration of Canonical Equations

  • B. D. Vujanovic
  • T. M. Atanackovic

Abstract

In this section we shall briefly discuss the famous Hamiltou-Jacobi method , which represents a general and effective method of integration of the Hamilton canonical differential equations
$$ \dot q_i = \frac{{\partial H}} {{\partial p_i }}, \dot p_i = - \frac{{\partial H}} {{\partial q_i }}, i = 1,...,n, $$
(2.1.1)
UPi oq, where H = H(t ,ql , ...,q n ,Pl, ...,P n ) is th e Hamiltonian function. In writing (2.1.1) we assumed that the nonconservative (nonpotential) generalized forces are equal to zero :
$$ Q_i = Q_i \left( {t,q_1 ,...q_n ,p_1 ,...p_n } \right) = 0. $$
(2.1.2)

Keywords

Riccati Equation Complete Solution Hamiltonian Function Canonical Transformation Auxiliary System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • B. D. Vujanovic
    • 1
  • T. M. Atanackovic
    • 1
  1. 1.Faculty of Technical SciencesUniversity of Novi SadSerbia and Montenegro

Personalised recommendations