A Multifield Theory for the Modeling of the Macroscopic Behavior of Shape Memory Materials

  • Davide Bernardini
  • Thomas J. Pence
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The macroscopic behavior of shape memory materials is modeled within the framework of multifield theories. Two scalar fields and a second-order tensor field are used as descriptors of the relevant microstructural phenomena. In this way it is possible to allow for pseudoelasticity and shape memory effect, as well as low and high temperature reorientation of Martensitic variants. The general aspects of the theory are discussed paying special attention to the treatment of balance equations and to the exploitation of the constitutive structure, which is characterized by the prescription of a response function for the entropy production. An example of an explicit model is also given.


Shape Memory Alloy Representative Volume Element Entropy Production Shape Memory Effect Phase Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Abeyaratne and J. K. Knowles, Kinetic relations and the propagation of phase boundaries in solids, Arch. Rational Mech. Anal., 114 (1991), 119–154.MathSciNetMATHCrossRefGoogle Scholar
  2. J. G. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13–52.MathSciNetMATHCrossRefGoogle Scholar
  3. D. Bernardini, On the macroscopic free energy functions for shape memory alloys, J. Mech. Phys. Solids, 49 (2001), 813–837.MATHCrossRefGoogle Scholar
  4. D. Bernardini and T. J. Pence, Shape memory materials: Modeling, in M. Schwartz, ed., Encyclopedia of Smart Materials, Vol. 2 John Wiley, New York, 2002a, 964–980.Google Scholar
  5. D. Bernardini and T. J. Pence, Models for one-variant shape memory materials based on dissipation functions, Internat. J. Nonlinear Mech., 37-8 (2002b), 1299–1317.Google Scholar
  6. K. Bhattacharya and R. V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials, Arch. Rational Mech. Anal., 139 (1997), 99–180.MathSciNetMATHCrossRefGoogle Scholar
  7. E. N. Bondaryev and C. M. Wayman, Some stress-strain-temperature relationships for shape memory alloys, Metall. Trans. A, 19 (1988), 2407–2413.CrossRefGoogle Scholar
  8. J. G. Boyd and D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials, Part I: The monolithic shape memory alloy, Internat. J. Plasticity, 12 (1996), 805–842.MATHCrossRefGoogle Scholar
  9. L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined Martensite internal variable, J. Intell. Material Systems Struct., 4 (1993), 229–242.CrossRefGoogle Scholar
  10. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer-Verlag, Berlin, 1995.Google Scholar
  11. G. Capriz, Continua with Microstructure, Springer-Verlag, Berlin, 1989.MATHCrossRefGoogle Scholar
  12. G. Capriz and E. G. Virga, Interactions in general continua with microstructure, Arch. Rational Mech. Anal., 109 (1990), 323–342.MathSciNetMATHCrossRefGoogle Scholar
  13. G. Capriz, Continua with substructure, Parts I and II, Phys. Mesomech., 3 (2000), 5–14 and 37-50.Google Scholar
  14. B. D. Coleman, Thermodynamics of materials with memory, Arch. Rational Mech. Anal., 17 (1964), 1–46.MathSciNetGoogle Scholar
  15. B. D. Coleman and M. E. Gurtin, Thermodynamics with internal state variables, J. Chemical Phys., 47 (1967), 597–613.CrossRefGoogle Scholar
  16. G. Del Piero and D. R. Owen, Structured deformations of continua, Arch. Rational Mech. Anal., 124 (1993), 99–155.MathSciNetMATHCrossRefGoogle Scholar
  17. J. E. Dunn and J. Serrin, On the thermodynamics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95–133.MathSciNetMATHCrossRefGoogle Scholar
  18. J. L. Ericksen, Equilibrium of bars, J. Elasticity, 3-4 (1975), 191–201.MathSciNetCrossRefGoogle Scholar
  19. A. C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, Berlin, 1999.Google Scholar
  20. F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys, Acta Metall, 28 (1980), 1773–1780.CrossRefGoogle Scholar
  21. F. D. Fischer, M. Berveiller, K. Tanaka, and E. R. Oberaigner, Continuum mechanical aspects of phase transformations in solids, Arch. Appl. Mech., 64 (1994), 54–85.MATHGoogle Scholar
  22. F. D. Fischer, Q. P. Sun, and K. Tanaka, Transformation-induced plasticity (TRIP), Appl. Mech. Rev., 49 (1996), 317–364.CrossRefGoogle Scholar
  23. M. Frémond and S. Miyazaki, Shape Memory Alloys, CISM Courses and Lectures 351, Springer-Verlag, Berlin, 1996.Google Scholar
  24. E. Fried and M. E. Gurtin, Dynamic solid-solid transitions with phase characterized by an order parameter, Phys. D, 72 (1994), 287–308.MathSciNetMATHCrossRefGoogle Scholar
  25. K. Gall and H. Sehitoglu, The role of texture in tension-compression asymmetry in polycrystalline NiTi, Internat. J. Plasticity, 15 (1999), 69–92.MATHCrossRefGoogle Scholar
  26. K. Gall, H. Sehitoglu, Y. I. Chumlyakov, I. V. Kireeva, Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi, Acta Materials, 47 (1999), 1203–1217.CrossRefGoogle Scholar
  27. X. Gao, M. Huang, and L. C. Brinson, A multivariant micromechanical model for SMAs, Part 1: Crystallographic issues for single crystal model, Internat. J. Plasticity, 16 (2000), 1345–1369.MATHCrossRefGoogle Scholar
  28. A. E. Green and P. M. Nagdhi, On the thermodynamics and the nature of the second law, Proc. Roy. Soc. London A, 357 (1977), 253–270.CrossRefGoogle Scholar
  29. M. Huang, X. Gao, and L. C. Brinson, A multivariant micromechanical model for SMAs, Part 2: Polycrystal model, Internat. J. Plasticity, 16 (2000), 1371–1390.CrossRefGoogle Scholar
  30. Y. Huo and I. Müller, Non equilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodynam., 5 (1993), 163–204.MATHCrossRefGoogle Scholar
  31. Y. Ivshin and T. J. Pence, A constitutive model for hysteretic phase transitions, Internat. J. Engng. Sci., 32 (1994a), 681–704.Google Scholar
  32. Y. Ivshin and T. J. Pence, A thermomechanical model for a one-variant shape memory material, J. Intell. Material Systems Struct., 5 (1994b), 455–473.Google Scholar
  33. V. I. Levitas, Thermomechanical theory of martensitic transformations in inelastic materials, Internat. J. Solids Struct., 35 (1998), 889–940.MathSciNetMATHCrossRefGoogle Scholar
  34. C. Liang and C. A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory alloys, J. Intell. Material Systems Struct., 1 (1990), 207–234.CrossRefGoogle Scholar
  35. J. Lubliner and F. Auricchio, Generalized plasticity and shape memory alloys, Internat. J. Solids Struct., 33 (1996), 991–1003.MATHCrossRefGoogle Scholar
  36. P. M. Mariano, Multifield theories in mechanics of solids, Adv. Appl. Mech., 38 (2001), 1–93.MathSciNetCrossRefGoogle Scholar
  37. K. R. Melton, General applications of shape memory alloys and smart materials, in K. Otsuka and C. M. Wayman, eds., Shape Memory Materials, Cambridge University Press, New York, 1999.Google Scholar
  38. I. Müller, On the entropy inequality, Arch. Rational Mech. Anal., 26 (1967), 118–141.MathSciNetMATHCrossRefGoogle Scholar
  39. I. Mül ler, Thermodynamics, Pitman, London, 1985.MATHGoogle Scholar
  40. I. Mül ler, On the size of the hysteresis in pseudoelasticity, Cont. Mech. Thermodynam., 1 (1989), 125–142.CrossRefGoogle Scholar
  41. A. I. Murdoch, Elastic Materials of Second Grade, Research Report ES 78-132, University of Cincinnati, Cincinnati, 1978.Google Scholar
  42. A. I. Murdoch, On material frame-indifference, Proc. Roy. Soc. London A, 380 (1982), 417–426.MATHCrossRefGoogle Scholar
  43. A. I. Murdoch, On objectivity and material symmetry for simple elastic solids, J. Elasticity, 60 (2000), 233–242.MathSciNetMATHCrossRefGoogle Scholar
  44. W. Noll, Lectures on the foundations of continuum mechanics and thermodynamics, Arch. Rational Mech. Anal., 52 (1973), 62–92.MathSciNetMATHCrossRefGoogle Scholar
  45. W. Noll and E. Virga, Fit regions and functions of bounded variation, Arch. Rational Mech. Anal., 102 (1988), 1–21.MathSciNetMATHCrossRefGoogle Scholar
  46. R. W. Ogden, Non-Linear Elastic Deformations, Dover Publications, Mineola, NY, 1997.Google Scholar
  47. K. Otsuka and K. Shimizu, Pseudoelasticity and shape memory effects in alloys, Internat. Metals Rev., 31 (1986), 93–114.CrossRefGoogle Scholar
  48. K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge University Press, New York, 1998.Google Scholar
  49. D. R. Owen and W. O. Williams, On the time derivatives of equilibrated response functions, Arch. Rational Mech. Anal., 33 (1969), 288–306.MathSciNetMATHCrossRefGoogle Scholar
  50. E. Patoor, A. Eberhardt, and M. Berveiller, Thermomechanical behavior of shape memory alloys, Arch. Mech., 40 (1988), 755–794.Google Scholar
  51. T. J. Pence, On the mechanical dissipation of solutions to the Riemann problem for impact involving a two-phase elastic material, Arch. Rational Mech. Anal., 117 (1992), 1–52.MathSciNetMATHCrossRefGoogle Scholar
  52. K. R. Rajagopal and A. R. Srinivasa, On the thermomechanics of shape memory wires, Z. Angew. Math. Phys., 50 (1999), 459–496.MathSciNetMATHCrossRefGoogle Scholar
  53. B. Raniecki, C. Lexcellent, and K. Tanaka, Thermodynamic models for pseudoelastic behavior of shape memory alloys, Arch. Mech., 44 (1992), 261–288.MathSciNetMATHGoogle Scholar
  54. B. Raniecki and C. Lexcellent, RL models of pseudoelasticity and their specification for some shape memory solids, Europ. J. Mech. A Solids, 13 (1994), 21–50.MathSciNetMATHGoogle Scholar
  55. J. R. Rice, Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19 (1971), 433–455.MATHCrossRefGoogle Scholar
  56. P. Rosakis and H. Tsai, Dynamic twinning processes in crystals, Internat. J. Solids Stuct., 32 (1995), 2711–2723.MATHCrossRefGoogle Scholar
  57. N. Siredey, E. Patoor, M. Berveiller, A. Eberhardt, Constitutive equations for polycrystalline thermoelastic shape memory alloys, Part I: Intragranular interactions and behavior of the grain, Internat. J. Solids Stuct., 36 (1999), 4289–4315.MATHCrossRefGoogle Scholar
  58. T. W. Shield, Orientation dependence of the pseudoelastic behavior of single crystals of CuAlNi intension, J. Mech. Phys. Solids, 43 (1995), 869–895.CrossRefGoogle Scholar
  59. M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Springer-Verlag, Berlin, 1997.MATHGoogle Scholar
  60. Q. P. Sun, K. C. Hwang, Micromechanics constitutive description of thermoelastic martensitic transformation, in J. Hutchinson and T. W. Wu, eds., Advances in Applied Mechanics, Vol. 31, Academic Press, New York, 1994, 249–298.Google Scholar
  61. K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, Internat. J. Plasticity, 2 (1986), 59–72.CrossRefGoogle Scholar
  62. L. Truskinovsky, Nucleation and growth in classical elastodynamics, in P. M. Duxbury and T. J. Pence, eds., Dynamics of Crystal Surfaces and Interfaces, Fundamental Materials Science Series, Plenum, New York, 1997, 185–197.Google Scholar
  63. L. Truskinovsky and G. Zanzotto, Elastic crystals with a triple point, J. Mech. Phys. Solids, 50 (2002), 189–215.MathSciNetMATHCrossRefGoogle Scholar
  64. X. Wu and T. J. Pence, Two variant modeling of shape memory materials: Unfolding a phase diagram triple point, J. Intell. Material Systems Struct., 9 (1998), 335–354.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Davide Bernardini
    • 1
  • Thomas J. Pence
    • 2
  1. 1.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations