Algebra, Geometry, and Computations of Exact Relations for Effective Moduli of Composites

  • Yury Grabovsky
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this paper we will review and extend the results of [21], which covered the case of 3D thermopiezoelectric polycrystals. In that context the settings of conductivity, elasticity, pyroelectricity, piezoelectricity, thermoelectricity, and thermoelasticity can be viewed as particular cases. We will consider a class of composites more general than polycrystals, where the set of allowable materials is not constrained in any way. In addition, the tensors of material properties are not assumed to be symmetric—an assumption we made in [21]. For example, the Hall effect for conduction in a weak magnetic field is described by a nonsymmetric conductivity tensor. We explain the step-by-step process of finding all exact relations for the simple example of the 2D Hall effect. The paper concludes with a discussion of new algebraic and geometric questions posed by the theory of exact relations.


Hall Effect Jordan Algebra Weak Magnetic Field Hall Coefficient Conductivity Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. E. Backus, Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67 (1962), 4427–440.CrossRefGoogle Scholar
  2. [2]
    P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer-Verlag, New York, 1996.Google Scholar
  3. [3]
    P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett., 59 (1987), 381.MathSciNetCrossRefGoogle Scholar
  4. [4]
    P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A, 38 (1988), 364.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978.Google Scholar
  6. [6]
    C. Davis, All convex invariant functions of hermitian matrices, Arch. Math., 8 (1957), 276–278.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 8 (1973), 391–411.MathSciNetMATHGoogle Scholar
  8. [8]
    G. de Marsily, Quantitative Hydrogeology, Academic Press, New York, 1986.Google Scholar
  9. [9]
    G. F. Dell’Antonio, R. Figari, and E. Orlandi, An approach through orthogonal projections to the study of inhomogeneous random media with linear response, Ann. Inst. H. Poincaré, 44 (1986), 1–28.MathSciNetMATHGoogle Scholar
  10. [10]
    W. J. Drugan, Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites, J. Mech. Phys. Solids, 48-6-7 (2000) (the J. R. Willis 60th anniversary volume), 1359–1387.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. J. Drugan and J. R. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44-4 (1996), 497–524.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    A. M. Dykhne, Anomalous plasma resistance in a strong magnetic field, Zh. Eksp. Teor. Fiz., 59 (1970), 641–647 (in Russian); Sov. Phys. JETP, 32 (1971), 348-351 (in English).Google Scholar
  13. [13]
    A. M. Dykhne, Conductivity of a two-dimensional two-phase system, Sov. Phys. JETP, 32 (1971), 63–65.Google Scholar
  14. [14]
    A. M. Dykhne and I. M. Ruzin, On the theory of the fractional quantum Hall effect: The two-phase model, J. Phys. Rev. B, 50 (1994), 2369–2379.CrossRefGoogle Scholar
  15. [15]
    G. A. Francfort and G. W. Milton, Optimal bounds for conduction in two-dimensional, multiphase, polycrystalline media, J. Statist. Phys., 46-1-2 (1987), 161–177.MathSciNetCrossRefGoogle Scholar
  16. [16]
    G. A. Francfort and G. W. Milton, Sets of conductivity and elasticity tensors stable under lamination, Comm. Pure Appl. Math., 47 (1994), 257–279.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    G. A. Francfort and F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rational Mech. Anal., 94 (1986), 307–334.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    K. M. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90 (1983), 473–491.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Y. Grabovsky, The G-closure of two well-ordered anisotropic conductors, Proc. Roy. Soc. Edinburgh Ser. A, 123 (1993), 423–432.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    Y. Grabovsky and G. W. Milton, Rank one plus a null-lagrangian is an inherited property of two-dimensional compliance tensors under homogenization, Proc. Roy. Soc. Edinburgh Ser. A, 128 (1998), 283–299.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    Y. Grabovsky, G. W. Milton, and D. S. Sage, Exact relations for effective tensors of polycrystals: Necessary conditions and sufficient conditions, Comm. Pure. Appl. Math., 53-3 (2000), 300–353.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11 (1963), 357–372.MATHCrossRefGoogle Scholar
  23. [23]
    R. Hill, Theory of mechanical properties of fibre-strengthened materials I: Elastic behaviour, J. Mech. Phys. Solids, 12 (1964), 199–212.MathSciNetCrossRefGoogle Scholar
  24. [24]
    V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 (translated from the Russian by G. A. Yosifian).CrossRefGoogle Scholar
  25. [25]
    Y. Kantor and D. J. Bergman, Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids, 32 (1984), 41–62.MATHCrossRefGoogle Scholar
  26. [26]
    J. B. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys., 5 (1964), 548–549.MATHCrossRefGoogle Scholar
  27. [27]
    P. R. King, The use of renormalization for calculating effective permeability, Transp. Porous Media, 4 (1989), 37–58.CrossRefGoogle Scholar
  28. [28]
    W. Kohler and G. C. Papanicolaou, Bounds for effective conductivity of random media, in R. Burridge, S. Childress, and G. Papanicolaou, eds., Macroscopic Properties of Disordered Media, Springer-Verlag, Berlin, 1982, 111–130.CrossRefGoogle Scholar
  29. [29]
    R. V. Kohn and R. Lipton, Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials, Arch. Rational Mech. Anal., 102 (1988), 331–350.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    S. M. Kozlov, Averaging of random structures, Dokl. Akad. Nauk SSSR, 241-5 (1978), 1016–1019.Google Scholar
  31. [31]
    K. A. Lurie and A. V. Cherkaev, G-closure of a set of anisotropic conducting media in the case of two dimensions, Dokl. Akad. Nauk SSSR, 259-2 (1981), 328–331 (in Russian).MathSciNetGoogle Scholar
  32. [32]
    K. A. Lurie and A. V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh Ser. A, 99 (1984), 71–87.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    K. A. Lurie and A. V. Cherkaev, G-closure of some particular sets of admissible material characteristics for the problem of bending of thin plates, J. Optim. Theory Appl., 42 (1984), 305–316.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    K. A. Lurie and A. V. Cherkaev, Exact estimates of a binary mixture of isotropic components, Proc. Roy. Soc. Edinburgh Ser. A, 104 (1986), 21–38.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    K. A. Lurie, A. V. Cherkaev, and A. V. Fedorov, On the existence of solutions to some problems of optimal design for bars and plates, J. Optim. Theory Appl., 42-2 (1984), 247–281.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    K. S. Mendelson, A theorem on the conductivity of two-dimensional heterogeneous medium, J. Appl. Phys., 46 (1975), 4740–4741.CrossRefGoogle Scholar
  37. [37]
    G. W. Milton, Classical hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors, Phys. Rev. B, 38-16 (1988), 11296–11303.MathSciNetCrossRefGoogle Scholar
  38. [38]
    G. W. Milton, On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math., 43 (1990), 63–125.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, UK, 2001.Google Scholar
  40. [40]
    F. Murat and L> Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, Birkhäuser Boston, Boston, 1997, 21–43.CrossRefGoogle Scholar
  41. [41]
    S. P. Neuman and S. Orr, Prediction of steady state flow in nonuniform geologic media by conditional moments: Exact non-local formalism, effective conductivities and weak approximation, Water Resources Res., 29-2 (1993), 341–364.CrossRefGoogle Scholar
  42. [42]
    G. Papanicolaou and S. Varadhan, Boundary value problems with rapidly oscillating coefficients, in Colloquia Mathematica Societatis János Bolyai 27: Random Fields (Esztergom, Hungary 1979), North-Holland, Amsterdam, 1982, 835–873.Google Scholar
  43. [43]
    U. Raitums, On the local representation of G-closure, Arch. Rational Mech. Anal., 158-3 (2001), 213–234.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    A. Saucier, Effective permeability of multifractal porous media, Phys. A, 183 (1992), 381–397.CrossRefGoogle Scholar
  45. [45]
    S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 571–597; errata, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 673.MATHGoogle Scholar
  46. [46]
    S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore, Ann. Scuola Norm. Sup. Pisa (3), 21 (1967), 657–699.MathSciNetMATHGoogle Scholar
  47. [47]
    D. Stroud and D. J. Bergman, New exact results for the Hall-coefficient and magnetore-sistance of inhomogeneous two-dimensional metals, Phys. Rev. B, 30 (1984), 447–449.CrossRefGoogle Scholar
  48. [48]
    L. Tartar, Estimation de coefficients homogénéisés, in Computing Methods in Applied Sciences and Engineering: Proceedings of the Third International Symposium, Versailles, 1977, vol. I, Lecture Notes in Mathematics 704, Springer-Verlag, Berlin, 1979, 364–373.Google Scholar
  49. [49]
    L. Tartar, Estimation fines des coefficients homogénéisés, in P. Kree, ed., Ennio de Giorgi’s Colloquium, Pitman, London, 1985, 168–187.Google Scholar
  50. [50]
    J. R. Willis, Elasticity theory of composites, in H. G. Hopkins and M. J. Sewell, eds., Mechanics of solids, Pergamon Press, Oxford, New York, 1982, 653–686.Google Scholar
  51. [51]
    V. V. Zhikov, Estimates for the homogenized matrix and the homogenized tensor, Russian Math. Surveys, 46-3 (1991), 65–136.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Yury Grabovsky
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations