Extended Thermodynamics: A Multifield Theory Par Exellence

  • I. Müller
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


A monatomic ideal gas, upon close inspection, reveals itself as a complex material whose proper description requires the use of hundreds, or even thousands of fields, at least in the rarefied state.


Mach Number Shock Tube Contact Discontinuity Moment Equation Shock Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Müller and T. Ruggeri, Extended Thermodynamics (1st ed.) and Rational Extended Thermodynamics (2nd ed.), Springer Tracts of Natural Philosophy, Springer-Verlag, New York, 1993 and 1998.Google Scholar
  2. [2]
    C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83–101.MathSciNetGoogle Scholar
  3. [3]
    W. Weiss, Zur Hierarchie der erweiterten Thermodynamik, dissertation, Technical University of Berlin, Berlin, 1990.Google Scholar
  4. [4]
    G. Boillat and T. Ruggeri, Moment equations in the kinetic theory of gases and wave velocities, Cont. Mech. Thermodynam., 9 (1997), 205–212.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    G. Boillat and T. Ruggeri, Maximum wave velocity in the moment system of a relativistic gas, Cont. Mech. Thermodynam., 11 (1999), 107–111.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    W. Weiss, Die Berechnung von kontinuierlichen Stoβstrukturen in der kinetischen Gastheorie, Habilitation thesis, Technical University of Berlin, Berlin, 1996.Google Scholar
  7. [7]
    N. A. Clark, Inelastic light scattering from density fluctuations in dilute gases: The kinetic-hydrodynamic transition in a monatomic gas, Phys. Rev. A, 12 (1975), 232–244.CrossRefGoogle Scholar
  8. [8]
    H. Grad, The Profile of a Steady Plane Shock Wave, Communications in Pure and Applied Mathematics 5, John Wiley, New York, 1952.Google Scholar
  9. [9]
    J. D. Au, Lösung nichtlinearer Probleme in der erweiterten Thermodynamik, dissertation, Technical University of Berlin, Berlin, 2001.Google Scholar
  10. [10]
    J. D. Au, M. Torrilhon, and W. Weiss, The shock tube study in extended thermodynamics, Phys. Fluids, 13 (2001), 2423–2432.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • I. Müller
    • 1
  1. 1.Faculty of Process Engineering, ThermodynamicsTechnical University of BerlinBerlinGermany

Personalised recommendations