Skip to main content

Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua

  • Chapter
Advances in Multifield Theories for Continua with Substructure

Abstract

The multifield statistical approach for the description of collective properties of mesodefect ensembles is developed to allow the determination of the specific nonlinear form of the evolution equation for the macroscopic tensor parameter of defect density. Characteristic self-similar solutions of this equation are found that describe the transition from damage to damage localization, strain localization, change of symmetry properties due to the generation of collective modes of mesodefects. This approach is applied to the study of stochastic crack dynamics, scaling effects in failure, the resonance excitation of failure (failure waves), the structure of plastic waves and instability in shocked condensed matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. A. Koneva, S. P. Lychagin, L. T. Trishkona, and E. V. Kozlov, in Strength of Metals and Alloys: Proceedings of the 7th International Conference, Montreal, Canada, Vol. 1, 1985, 21.

    Google Scholar 

  2. N. Hansen and D. Kuhlmann-Wilsdorf, Materials Sci. Engrg., 81 (1986), 141.

    Article  Google Scholar 

  3. V. I. Betechtin, O. B. Naimark, and V. V. Silbershmidt, in Proceedings of the International Conference on Fracture (ICF 7), Vol. 6, 1989, 38.

    Google Scholar 

  4. V. I. Betechtin and V. I. Vladimirov, in S. N. Zhurkov, ed., Problems of Strength and Plasticity of Solids, Nauka, Leningrad, 1979, 142.

    Google Scholar 

  5. O. B. Naimark, in J. R. Willis, ed., Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluver Academic Publishers, Dordrecht, The Netherlands, 1997, 285–298.

    Chapter  Google Scholar 

  6. G. I. Barenblatt and L. R. Botvina, Izv. An. SSSR Mech. Tv. Tela, 4 (1983), 161 (inRussian).

    Google Scholar 

  7. A. Kadic and G. B. Edelen, Lecture Notes in Physics 174, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  8. Yu. L. Raikher and M. I. Shliomis, W. Coffey, ed., in Relaxation Phenomena in Condensed Matter, Advances in Chemical Physics LXXXVI, John Wiley, New York, 1994, 595.

    Google Scholar 

  9. M. A. Leontovich, Introduction to thermodynamics, in Statistical Physics, Nauka, Moscow, 1983, Chapter 3.

    Google Scholar 

  10. O. B. Naimark and V. V. Silbershmidt, Europ. J. Mech. Sen A Solids, 10 (1991), 607.

    MATH  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Statistical Physics, Pergamon Press, Oxford, UK, 1980.

    Google Scholar 

  12. O. B. Naimark, JETP Lett., 67-9 (1998), 751.

    Article  Google Scholar 

  13. S. P. Kurdjumov, in Dissipative Structures and Chaos in Non-Linear Space, Vol. 1, Utopia, Singapore, 1988, 431.

    Google Scholar 

  14. J. Fineberg, S. P. Gross, and E. Sharon, in J. R. Willis, ed., Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluver Academic Publishers, Dordrecht, The Netherlands, 1997, 177.

    Chapter  Google Scholar 

  15. K. Ravi-Chandar and W. G. Knauss, Internat. J. Fracture, 26 (1982), 65.

    Article  Google Scholar 

  16. L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK, 1990.

    Book  MATH  Google Scholar 

  17. J. Fineberg, S. Gross, M. Marder, and H. Swinney, Phys. Rev. Lett., 67 (1991), 457.

    Article  Google Scholar 

  18. E. Sharon, S. P. Gross, and J. Fineberg, Phys. Rev. Lett., 74 (1995), 5096.

    Article  Google Scholar 

  19. J. F. Boudet, S. Ciliberto, and V. Steinberg, J. Physique, 6 (1993), 1493.

    Article  Google Scholar 

  20. E. Sharon, S. P. Gross, and F. Fineberg, Phys. Rev. Lett., 76 (1996), 2117.

    Article  Google Scholar 

  21. B. L. Holian and R. Thomson, Phys. Rev. E, 56-1 (1997), 1071.

    Article  Google Scholar 

  22. A. A. Griffith, Philos. Trans. Roy. Soc. London Ser. A, 221 (1921), 163.

    Article  Google Scholar 

  23. N. F. Mott, Engineering, 165 (1948), 16.

    Google Scholar 

  24. G. R. Irwin, J. Appl. Mech., 24 (1957), 361.

    Google Scholar 

  25. G. I. Barenblatt, Adv. Appl. Mech., 7 (1962), 55.

    Article  MathSciNet  Google Scholar 

  26. J. R. Rice, J. Appl. Mech., 35 (1968), 37.

    Article  Google Scholar 

  27. Ya. I. Frenkel, J. Tech. Phys., 22-11 (1952), 1857.

    Google Scholar 

  28. O. B. Naimark, M. M. Davydova, and O. A. Plekhov, in G. Frantziskonis, ed., Proceedings of the NATO Workshop “Probamat: 21st Century”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, 127.

    Google Scholar 

  29. O. B. Naimark, M. M. Davydova, O. A. Plekhov, and S. V. Uvarov, Phys. Mesomech., 2–3 (1999), 47.

    Google Scholar 

  30. O. B. Naimark, M. M. Davydova, and O. A. Plekhov, Comput. Struct., 76 (2000), 67.

    Article  Google Scholar 

  31. O. B. Naimark, Plasticity and damage (plenary lecture), in D. Miannay, P. Costa, D. Francois, and A. Pineau, eds., Proceedings of EUROMAT 2000: Advances in Mechanical Behavior, Vol. 1, Elsevier, Amsterdam, 2000, 15–28.

    Google Scholar 

  32. B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nature, 308 (1984), 721.

    Article  Google Scholar 

  33. E. Bouchaud, in A. Carpinteri, ed., Proceedings of the IUTAM Symposium “Size-Scale Effects in Failure Mechanisms of Materials and Structures”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, 121.

    Google Scholar 

  34. J. J. Mecholsky, in C. R. Kurkjian, ed., Strength of Inorganic Materials, Plenum Press, New York, 1995, 569.

    Google Scholar 

  35. J. Feder, Fractals, Plenum Press, New York, London, 1988.

    MATH  Google Scholar 

  36. O. B. Naimark and M. M. Davydova, J. Physique III, 6 (1996), 259.

    Google Scholar 

  37. L. A. Galin and G. P. Cherepanov, Soviet Phys. Dokl., 167 (1966), 543.

    Google Scholar 

  38. N. Bourne, J. Millett, Z. Rosenberg, and N. Murray, J. Mech. Phys. Solids, 46 (1998), 1887.

    Article  MATH  Google Scholar 

  39. S. V. Rasorenov, G. J. Kanel, V. E. Fortov, and M. M. Abasenov, High Pressure Res., 6 (1991), 225.

    Article  Google Scholar 

  40. V. N. Nikolaevskii, Internat. J. Engrg. Sci., 19 (1981), 41.

    Article  Google Scholar 

  41. N. K. Brar and S. J. Bless, High Pressure Res., 10 (1992), 773.

    Article  Google Scholar 

  42. N. Bourne, Z. Rosenberg, and J. E. Field, J. Appl. Phys., 78 (1995), 3736.

    Article  Google Scholar 

  43. D. P. Dandekar and P. A. Beaulieu, in L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds., Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier Science, Amsterdam, 1995, 211.

    Google Scholar 

  44. N. Bourne, Z. Rosenberg, J. E. Field and I. G. Crouch, J. Phys. IV Colloq. C, 8 (1994), 635.

    Google Scholar 

  45. R. V. Gibbons and T. J. Ahrens, J. Geophys. Res., 76 (1971), 5489.

    Article  Google Scholar 

  46. R. J. Clifton, Appl. Mech. Rev., 46 (1993), 540.

    Article  Google Scholar 

  47. O. B. Naimark, Keynote lecture, in B. Karihaloo, ed., Proceedings of the IX th International Conference of Fracture, Vol. 6, Sydney, 1997, 2795.

    Google Scholar 

  48. O. B. Naimark, F. Collombet, and J.-L. Lataillade, J. Phys. IV Colloq. C, 7 (1998), 773.

    Google Scholar 

  49. O. A. Plekhov, D. N. Eremeev, and O. B. Naimark, J. Phys. IV Colloq. C, 10 (2000), 811.

    Google Scholar 

  50. V. V. Beljaev and O. B. Naimark, Soviet Phys. Dokl., 312-2 (1990), 289.

    Google Scholar 

  51. E. Bellendir, V. V. Beljaev, and O. B. Naimark, Soviet Tech. Phys. Lett., 15-3 (1989), 90.

    Google Scholar 

  52. D. E. Grady, J. Appl. Phys., 53 (1982), 322.

    Article  Google Scholar 

  53. M. E. Kipp and D. E. Grady, J. Mech. Phys. Solids, 33 (1986), 399.

    Article  Google Scholar 

  54. L. A. Glenn and A. Chudnovsky, J. Appl. Phys., 59 (1986), 1379.

    Article  Google Scholar 

  55. D. E. Grady, J. Mech. Phys. Solids, 36 (1988), 353.

    Article  Google Scholar 

  56. D. E. Grady and M. E. Kipp, J. Appl. Phys., 58-3 (1985), 1210.

    Article  Google Scholar 

  57. D. E. Grady, J. Appl. Phys., 68 (1990), 6099.

    Article  Google Scholar 

  58. D. E. Grady, Fragmentation by blasting, in W. L. Fourney, R. R. Boade, and L. S. Costin, eds., Experimental Mechanics, Society for Experimental Mechanics, Bethel, CT, 1985, 63.

    Google Scholar 

  59. H. Senf, E. Strauburger, and H. Rothenhausler, in L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds., Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier Science, Amsterdam, 1995, 163.

    Google Scholar 

  60. O. B. Naimark and V. V. Belayev, Phys. Combust. Explosion, 25 (1989), 115.

    Google Scholar 

  61. A. D. Sakharov, R. M. Zaidel, V. N. Mineev, and A. G. Oleinik, Soviet Phys. Dokl., 9 (1965), 1091; V. N. Mineev and E. N. Savinov, Soviet Phys. JETP, 25 (1967), 411; V. N. Mineev and R. M. Zaidel, Sov. Phys. JETP, 27 (1968), 874.

    Google Scholar 

  62. W. Band and G. E. Duval, Amer. J. Phys., 29 (1961), 780.

    Article  MATH  Google Scholar 

  63. D. C. Wallace, Phys. Rev. B, 24 (1981), 5597 and 5607.

    Article  Google Scholar 

  64. L. M. Barker, Behavior of Dense Media Under High Pressures, Gordon and Breach, New York, 1968.

    Google Scholar 

  65. Lord Rayleigh, Proc. Roy. Soc. London, 84 (1910), 247.

    Article  MATH  Google Scholar 

  66. G. I. Taylor, Proc. Roy. Soc. London, 84 (1910), 371.

    Article  MATH  Google Scholar 

  67. R. Von Mises, J. Aero. Sci., 17 (1950), 551.

    Google Scholar 

  68. M. J. Lighthill, Surveys in Mechanics, Cambridge University, Cambridge, UK, 1965.

    Google Scholar 

  69. J. W. Swegle and D. E. Grady, J. Appl. Phys., 58-2 (1985).

    Google Scholar 

  70. O. B. Naimark, Soviet Tech. Phys. Lett., 23-7 (1997), 529.

    Article  Google Scholar 

  71. Ja. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, UK, 1946.

    MATH  Google Scholar 

  72. B. V. Derjagin et al., Polymer, 30 (1989), 1.

    Google Scholar 

  73. D. R. Carlson, S. E. Widnall, and M. F. Peeters, J. Fluid Mech., 121 (1982), 487.

    Article  Google Scholar 

  74. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics, Nauka, Moscow, 1988 (in Russian).

    MATH  Google Scholar 

  75. Yu. L. Klimontovich, Phys. B, 229 (1996), 51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Naimark, O.B. (2004). Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua. In: Capriz, G., Mariano, P.M. (eds) Advances in Multifield Theories for Continua with Substructure. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8158-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8158-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6465-1

  • Online ISBN: 978-0-8176-8158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics