Advertisement

Defect-Induced Transitions as Mechanisms of Plasticity and Failure in Multifield Continua

  • O. B. Naimark
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The multifield statistical approach for the description of collective properties of mesodefect ensembles is developed to allow the determination of the specific nonlinear form of the evolution equation for the macroscopic tensor parameter of defect density. Characteristic self-similar solutions of this equation are found that describe the transition from damage to damage localization, strain localization, change of symmetry properties due to the generation of collective modes of mesodefects. This approach is applied to the study of stochastic crack dynamics, scaling effects in failure, the resonance excitation of failure (failure waves), the structure of plastic waves and instability in shocked condensed matter.

Keywords

Solitary Wave Process Zone Collective Mode Shock Wave Front Crack Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. A. Koneva, S. P. Lychagin, L. T. Trishkona, and E. V. Kozlov, in Strength of Metals and Alloys: Proceedings of the 7th International Conference, Montreal, Canada, Vol. 1, 1985, 21.Google Scholar
  2. [2]
    N. Hansen and D. Kuhlmann-Wilsdorf, Materials Sci. Engrg., 81 (1986), 141.CrossRefGoogle Scholar
  3. [3]
    V. I. Betechtin, O. B. Naimark, and V. V. Silbershmidt, in Proceedings of the International Conference on Fracture (ICF 7), Vol. 6, 1989, 38.Google Scholar
  4. [4]
    V. I. Betechtin and V. I. Vladimirov, in S. N. Zhurkov, ed., Problems of Strength and Plasticity of Solids, Nauka, Leningrad, 1979, 142.Google Scholar
  5. [5]
    O. B. Naimark, in J. R. Willis, ed., Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluver Academic Publishers, Dordrecht, The Netherlands, 1997, 285–298.CrossRefGoogle Scholar
  6. [6]
    G. I. Barenblatt and L. R. Botvina, Izv. An. SSSR Mech. Tv. Tela, 4 (1983), 161 (inRussian).Google Scholar
  7. [7]
    A. Kadic and G. B. Edelen, Lecture Notes in Physics 174, Springer-Verlag, Berlin, 1983.Google Scholar
  8. [8]
    Yu. L. Raikher and M. I. Shliomis, W. Coffey, ed., in Relaxation Phenomena in Condensed Matter, Advances in Chemical Physics LXXXVI, John Wiley, New York, 1994, 595.Google Scholar
  9. [9]
    M. A. Leontovich, Introduction to thermodynamics, in Statistical Physics, Nauka, Moscow, 1983, Chapter 3.Google Scholar
  10. [10]
    O. B. Naimark and V. V. Silbershmidt, Europ. J. Mech. Sen A Solids, 10 (1991), 607.MATHGoogle Scholar
  11. [11]
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Statistical Physics, Pergamon Press, Oxford, UK, 1980.Google Scholar
  12. [12]
    O. B. Naimark, JETP Lett., 67-9 (1998), 751.CrossRefGoogle Scholar
  13. [13]
    S. P. Kurdjumov, in Dissipative Structures and Chaos in Non-Linear Space, Vol. 1, Utopia, Singapore, 1988, 431.Google Scholar
  14. [14]
    J. Fineberg, S. P. Gross, and E. Sharon, in J. R. Willis, ed., Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluver Academic Publishers, Dordrecht, The Netherlands, 1997, 177.CrossRefGoogle Scholar
  15. [15]
    K. Ravi-Chandar and W. G. Knauss, Internat. J. Fracture, 26 (1982), 65.CrossRefGoogle Scholar
  16. [16]
    L. B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK, 1990.MATHCrossRefGoogle Scholar
  17. [17]
    J. Fineberg, S. Gross, M. Marder, and H. Swinney, Phys. Rev. Lett., 67 (1991), 457.CrossRefGoogle Scholar
  18. [18]
    E. Sharon, S. P. Gross, and J. Fineberg, Phys. Rev. Lett., 74 (1995), 5096.CrossRefGoogle Scholar
  19. [19]
    J. F. Boudet, S. Ciliberto, and V. Steinberg, J. Physique, 6 (1993), 1493.CrossRefGoogle Scholar
  20. [20]
    E. Sharon, S. P. Gross, and F. Fineberg, Phys. Rev. Lett., 76 (1996), 2117.CrossRefGoogle Scholar
  21. [21]
    B. L. Holian and R. Thomson, Phys. Rev. E, 56-1 (1997), 1071.CrossRefGoogle Scholar
  22. [22]
    A. A. Griffith, Philos. Trans. Roy. Soc. London Ser. A, 221 (1921), 163.CrossRefGoogle Scholar
  23. [23]
    N. F. Mott, Engineering, 165 (1948), 16.Google Scholar
  24. [24]
    G. R. Irwin, J. Appl. Mech., 24 (1957), 361.Google Scholar
  25. [25]
    G. I. Barenblatt, Adv. Appl. Mech., 7 (1962), 55.MathSciNetCrossRefGoogle Scholar
  26. [26]
    J. R. Rice, J. Appl. Mech., 35 (1968), 37.CrossRefGoogle Scholar
  27. [27]
    Ya. I. Frenkel, J. Tech. Phys., 22-11 (1952), 1857.Google Scholar
  28. [28]
    O. B. Naimark, M. M. Davydova, and O. A. Plekhov, in G. Frantziskonis, ed., Proceedings of the NATO WorkshopProbamat: 21st Century”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998, 127.Google Scholar
  29. [29]
    O. B. Naimark, M. M. Davydova, O. A. Plekhov, and S. V. Uvarov, Phys. Mesomech., 2–3 (1999), 47.Google Scholar
  30. [30]
    O. B. Naimark, M. M. Davydova, and O. A. Plekhov, Comput. Struct., 76 (2000), 67.CrossRefGoogle Scholar
  31. [31]
    O. B. Naimark, Plasticity and damage (plenary lecture), in D. Miannay, P. Costa, D. Francois, and A. Pineau, eds., Proceedings of EUROMAT 2000: Advances in Mechanical Behavior, Vol. 1, Elsevier, Amsterdam, 2000, 15–28.Google Scholar
  32. [32]
    B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nature, 308 (1984), 721.CrossRefGoogle Scholar
  33. [33]
    E. Bouchaud, in A. Carpinteri, ed., Proceedings of the IUTAM Symposium “Size-Scale Effects in Failure Mechanisms of Materials and Structures”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996, 121.Google Scholar
  34. [34]
    J. J. Mecholsky, in C. R. Kurkjian, ed., Strength of Inorganic Materials, Plenum Press, New York, 1995, 569.Google Scholar
  35. [35]
    J. Feder, Fractals, Plenum Press, New York, London, 1988.MATHGoogle Scholar
  36. [36]
    O. B. Naimark and M. M. Davydova, J. Physique III, 6 (1996), 259.Google Scholar
  37. [37]
    L. A. Galin and G. P. Cherepanov, Soviet Phys. Dokl., 167 (1966), 543.Google Scholar
  38. [38]
    N. Bourne, J. Millett, Z. Rosenberg, and N. Murray, J. Mech. Phys. Solids, 46 (1998), 1887.MATHCrossRefGoogle Scholar
  39. [39]
    S. V. Rasorenov, G. J. Kanel, V. E. Fortov, and M. M. Abasenov, High Pressure Res., 6 (1991), 225.CrossRefGoogle Scholar
  40. [40]
    V. N. Nikolaevskii, Internat. J. Engrg. Sci., 19 (1981), 41.CrossRefGoogle Scholar
  41. [41]
    N. K. Brar and S. J. Bless, High Pressure Res., 10 (1992), 773.CrossRefGoogle Scholar
  42. [42]
    N. Bourne, Z. Rosenberg, and J. E. Field, J. Appl. Phys., 78 (1995), 3736.CrossRefGoogle Scholar
  43. [43]
    D. P. Dandekar and P. A. Beaulieu, in L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds., Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier Science, Amsterdam, 1995, 211.Google Scholar
  44. [44]
    N. Bourne, Z. Rosenberg, J. E. Field and I. G. Crouch, J. Phys. IV Colloq. C, 8 (1994), 635.Google Scholar
  45. [45]
    R. V. Gibbons and T. J. Ahrens, J. Geophys. Res., 76 (1971), 5489.CrossRefGoogle Scholar
  46. [46]
    R. J. Clifton, Appl. Mech. Rev., 46 (1993), 540.CrossRefGoogle Scholar
  47. [47]
    O. B. Naimark, Keynote lecture, in B. Karihaloo, ed., Proceedings of the IX th International Conference of Fracture, Vol. 6, Sydney, 1997, 2795.Google Scholar
  48. [48]
    O. B. Naimark, F. Collombet, and J.-L. Lataillade, J. Phys. IV Colloq. C, 7 (1998), 773.Google Scholar
  49. [49]
    O. A. Plekhov, D. N. Eremeev, and O. B. Naimark, J. Phys. IV Colloq. C, 10 (2000), 811.Google Scholar
  50. [50]
    V. V. Beljaev and O. B. Naimark, Soviet Phys. Dokl., 312-2 (1990), 289.Google Scholar
  51. [51]
    E. Bellendir, V. V. Beljaev, and O. B. Naimark, Soviet Tech. Phys. Lett., 15-3 (1989), 90.Google Scholar
  52. [52]
    D. E. Grady, J. Appl. Phys., 53 (1982), 322.CrossRefGoogle Scholar
  53. [53]
    M. E. Kipp and D. E. Grady, J. Mech. Phys. Solids, 33 (1986), 399.CrossRefGoogle Scholar
  54. [54]
    L. A. Glenn and A. Chudnovsky, J. Appl. Phys., 59 (1986), 1379.CrossRefGoogle Scholar
  55. [55]
    D. E. Grady, J. Mech. Phys. Solids, 36 (1988), 353.CrossRefGoogle Scholar
  56. [56]
    D. E. Grady and M. E. Kipp, J. Appl. Phys., 58-3 (1985), 1210.CrossRefGoogle Scholar
  57. [57]
    D. E. Grady, J. Appl. Phys., 68 (1990), 6099.CrossRefGoogle Scholar
  58. [58]
    D. E. Grady, Fragmentation by blasting, in W. L. Fourney, R. R. Boade, and L. S. Costin, eds., Experimental Mechanics, Society for Experimental Mechanics, Bethel, CT, 1985, 63.Google Scholar
  59. [59]
    H. Senf, E. Strauburger, and H. Rothenhausler, in L. E. Murr, K. P. Staudhammer, and M. A. Meyers, eds., Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, Elsevier Science, Amsterdam, 1995, 163.Google Scholar
  60. [60]
    O. B. Naimark and V. V. Belayev, Phys. Combust. Explosion, 25 (1989), 115.Google Scholar
  61. [61]
    A. D. Sakharov, R. M. Zaidel, V. N. Mineev, and A. G. Oleinik, Soviet Phys. Dokl., 9 (1965), 1091; V. N. Mineev and E. N. Savinov, Soviet Phys. JETP, 25 (1967), 411; V. N. Mineev and R. M. Zaidel, Sov. Phys. JETP, 27 (1968), 874.Google Scholar
  62. [62]
    W. Band and G. E. Duval, Amer. J. Phys., 29 (1961), 780.MATHCrossRefGoogle Scholar
  63. [63]
    D. C. Wallace, Phys. Rev. B, 24 (1981), 5597 and 5607.CrossRefGoogle Scholar
  64. [64]
    L. M. Barker, Behavior of Dense Media Under High Pressures, Gordon and Breach, New York, 1968.Google Scholar
  65. [65]
    Lord Rayleigh, Proc. Roy. Soc. London, 84 (1910), 247.MATHCrossRefGoogle Scholar
  66. [66]
    G. I. Taylor, Proc. Roy. Soc. London, 84 (1910), 371.MATHCrossRefGoogle Scholar
  67. [67]
    R. Von Mises, J. Aero. Sci., 17 (1950), 551.Google Scholar
  68. [68]
    M. J. Lighthill, Surveys in Mechanics, Cambridge University, Cambridge, UK, 1965.Google Scholar
  69. [69]
    J. W. Swegle and D. E. Grady, J. Appl. Phys., 58-2 (1985).Google Scholar
  70. [70]
    O. B. Naimark, Soviet Tech. Phys. Lett., 23-7 (1997), 529.CrossRefGoogle Scholar
  71. [71]
    Ja. I. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, UK, 1946.MATHGoogle Scholar
  72. [72]
    B. V. Derjagin et al., Polymer, 30 (1989), 1.Google Scholar
  73. [73]
    D. R. Carlson, S. E. Widnall, and M. F. Peeters, J. Fluid Mech., 121 (1982), 487.CrossRefGoogle Scholar
  74. [74]
    G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics, Nauka, Moscow, 1988 (in Russian).MATHGoogle Scholar
  75. [75]
    Yu. L. Klimontovich, Phys. B, 229 (1996), 51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • O. B. Naimark
    • 1
  1. 1.Institute of Continuous Media Mechanics, Urals DivisionRussian Academy of SciencesPermRussia

Personalised recommendations