Advertisement

Cocycles, Compatibility, and Poisson Brackets for Complex Fluids

  • Hernán Cendra
  • Jerrold Marsden
  • Tudor S. Ratiu
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Motivated by Poisson structures for complex fluids, such as the Poisson structure for spin glasses given in Holm and Kupershmidt [1988], we investigate a general construction of Poisson brackets with cocycles. Connections with the construction of compatible brackets found in the theory of integrable systems are also briefly discussed.

Keywords

Poisson Bracket Spin Glass Symplectic Manifold Poisson Structure Tensor Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin Cummings, San Francisco, 1978; 2nd ed. (reprinted and updated), Perseus Publishing, Cambridge, MA, 1985.MATHGoogle Scholar
  2. R. Abraham, J. E. Marsden, and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, 2nd ed., Applied Mathematical Sciences 75, Springer-Verlag, New York, 1988.Google Scholar
  3. V. I. Arnold, Mathematical Methods of Classical Mechanics, 1st and 2nd eds., Graduate Texts in Mathematics 60, Springer-Verlag, 1978 and 1989.Google Scholar
  4. M. Castrillón López, T. S. Ratiu, and S. Shkoller, Reduction in principal fiber bundles: Covariant Euler-Poincaré equations, Proc. Amer. Math. Soc., 128 (2000), 2155–2164.MathSciNetMATHCrossRefGoogle Scholar
  5. H. Cendra, D. D. Holm, M. J. W. Hoyle, and J. E. Marsden, The Maxwell-Vlasov equations in Euler-Poincaré form, J. Math. Phys., 39 (1998), 3138–3157.MathSciNetMATHCrossRefGoogle Scholar
  6. H. Cendra, J. E. Marsden, S. Pekarsky, and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations, Moscow Math. J., special issue for the 65th birthday of V. Arnold, to appear (2003).Google Scholar
  7. H. Cendra, J. E. Marsden, and T. S. Ratiu, Lagrangian Reduction by Stages, Memoirs of the American Mathematical Society 152, AMS, Providence, RI, 2001a.Google Scholar
  8. H. Cendra, J. E. Marsden, and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems. in B. Enquist and W. Schmid, eds., Mathematics Unlimited: 2001 and Beyond, Springer-Verlag, New York, 2001b, 221–273.Google Scholar
  9. M. Gotay, J. Isenberg, and J. E. Marsden, Momentum Maps and the Hamiltonian Structure of Classical Relativistic Field Theories I, 1997; available online from http://www.cds.caltech.edu/~marsden/.
  10. D. D. Holm, Euler-Poincaré dynamics of perfect complex fluids, in P. Newton, P. Holmes, and A. Weinstein, Geometry, Mechanics, and Dynamics, Springer-Verlag, New York, 2002, 113–168.Google Scholar
  11. D. D. Holm and B. A. Kupershmidt, The analogy between spin glasses and Yang-Mills fluids, J. Math. Phys., 29 (1988), 21–30.MathSciNetMATHCrossRefGoogle Scholar
  12. D. D. Holm, J. E. Marsden, T. S. Ratiu, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1–196.MathSciNetMATHCrossRefGoogle Scholar
  13. B. A. Kupershmidt, Discrete Lax equations and differential-difference calculus, Astérisque, 212 (1985).Google Scholar
  14. P. Libermann and C. M. Marie, Symplectic Geometry and Analytical Mechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1987.MATHCrossRefGoogle Scholar
  15. J. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter, and T. Ratiu, Symplectic Reduction by Stages, preprint, 2002.Google Scholar
  16. J. Marsden, G. Misiolek, M. Perlmutter, and T. Ratiu, Symplectic reduction for semidirect products and central extensions, Differential Geom. Appl., 9 (1998), 173–212.MathSciNetMATHCrossRefGoogle Scholar
  17. J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351–395.MathSciNetMATHCrossRefGoogle Scholar
  18. J. E. Marsden and M. Perlmutter, The orbit bundle picture of cotangent bundle reduction, C. R. Math. Acad. Sci. Soc. Roy. Canada, 22 (2000), 33–54.MathSciNetMATHGoogle Scholar
  19. J. E. Marsden and T. Ratiu, Reduction of Poisson manifolds, Lett. Math. Phys., 11 (1986), 161–170.MathSciNetMATHCrossRefGoogle Scholar
  20. J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 1st and 2nd eds., Texts in Applied Mathematics 17, Springer-Verlag, New York, 1994 and 1999.Google Scholar
  21. J. E. Marsden, T. S. Ratiu, and A. Weinstein, Semi-direct products and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984a), 147–177.MathSciNetMATHCrossRefGoogle Scholar
  22. J. E. Marsden, T. S. Ratiu, and A. Weinstein, Reduction and Hamiltonian structures on duals of semidirect product Lie algebras, Contemp. Math., 28 (1984b), 55–100.MathSciNetCrossRefGoogle Scholar
  23. J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Phys. D, 4 (1982), 394–406.MathSciNetMATHCrossRefGoogle Scholar
  24. J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices and Clebsch variables for incompressible fluids, Phys. D, 7 (1983), 305–323.MathSciNetCrossRefGoogle Scholar
  25. R. Montgomery, Canonical formulations of a particle in a Yang-Mills field, Lett. Math. Phys., 8 (1984), 59–67.MathSciNetMATHCrossRefGoogle Scholar
  26. R. Montgomery, The Bundle Picture in Mechanics, Ph.D. thesis, University of California at Berkeley, Berkeley, CA, 1986.Google Scholar
  27. H. C. Öttinger, Modeling complex fluids with a tensor and a scalar as structural variables, Rev. Mexicana Fis., 48 (2002), supl. 1, 220–229.Google Scholar
  28. G. W. Patrick, The Landau-Lifshitz equation by semidirect product reduction, Lett. Math. Phys., 50 (1999), 177–188.MathSciNetMATHCrossRefGoogle Scholar
  29. M. Pedroni, Equivalence of the Drinfeld-Sokolov reduction to a bi-Hamiltonian reduction, Lett. Math. Phys., 35 (1995), 291–302.MathSciNetMATHCrossRefGoogle Scholar
  30. T. S. Ratiu, Involution theorems, in G. Kaiser and J. Marsden, eds., Geometric Methods in Mathematical Physics, Springer Lecture Notes 775, Springer-Verlag, Berlin, New York, Heidelberg, 1980, 219–257.CrossRefGoogle Scholar
  31. S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci., 74 (1977), 5253–5254.MathSciNetMATHCrossRefGoogle Scholar
  32. W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré, 27 (1977), 101–114.MathSciNetMATHGoogle Scholar
  33. A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys., 2 (1978), 417–420.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Hernán Cendra
    • 1
    • 4
  • Jerrold Marsden
    • 2
  • Tudor S. Ratiu
    • 3
  1. 1.Departamento de MatemáticaUniversidad Nacional del SurArgentina
  2. 2.Control and Dynamical SystemsCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Département de MathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.CONICETArgentina

Personalised recommendations