Skip to main content

Work Conditions and Energy Functions for Ideal Elastic-Plastic Materials

  • Chapter

Abstract

The paper deals with the cyclic second law and Il’yushin’s condition for isothermal, ideal, isotropic, elastic-plastic materials at large deformations. The second law is equivalent to the existence of the elastic potential and the nonnegativity of plastic power. The material admits infinitely many free energies: The set of all energy functions is described in terms of a dissipation function. Its convexification provides the optimal lower bound for plastic work; it also figures in the maximal and minimal energies. Il’yushin’s condition is equivalent to the existence of the elastic potential and a new condition that is stronger than the normality of the plastic stretching and the convexity of the stress range. Il’yushin’s condition is also equivalent to the existence of a new kind of energy function called “the initial and final extended energy functions.” Materials of type C are introduced for which the initial extended energy function has additional convexity properties. It can be viewed as a stored energy of a Hencky hyperelastic material associated with the elastic-plastic material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Ball, Differentiability properties of symmetric and isotropic functions, Duke Math. J., 51 (1984), 699–728.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bertram, Material systems: A framework for the description of material behavior, Arch. Rational Mech. Anal., 80 (1982), 99–133.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bertram, Axiomatische Einführung in die Kontinuumsmechanik, Wissenschaftsverlag, Mannheim, Germany, 1989.

    MATH  Google Scholar 

  4. C. Carstensen, K. Hackl, and A. Mielke, Nonconvex potentials and microstructures in finite-strain plasticity, Proc. Roy. Soc. London Sect. A, 458 (2002), 299–317.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. D. Coleman and D. R. Owen, A mathematical foundation for thermodynamics, Arch. Rational Mech. Anal., 54 (1974), 1–104.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. D. Coleman and D. R. Owen, On thermodynamics and elastic-plastic materials, Arch. Rational Mech. Anal., 59 (1975), 25–51.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. D. Coleman and D. R. Owen, On the thermodynamics of elastic-plastic materials with temperature-dependent moduli and yields stresses, Arch. Rational Mech. Anal., 70 (1979), 339–354.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dieudonné, Treatise on Analysis, Vols. I, II, and IV, Academic Press, New York, 1960, 1970, 1974.

    Google Scholar 

  9. I. Ekeland and R. Témam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  10. R. Fosdick and E. Volkmann, Normality and convexity of the yield surface in nonlinear plasticity, Quart. Appl. Math., 51 (1993), 117–127.

    MathSciNet  MATH  Google Scholar 

  11. R. Hill, Constitutive inequalities for simple materials, J. Mech. Phys. Solids, 16 (1968), 229–242.

    Article  MATH  Google Scholar 

  12. R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain, Proc. Roy. Soc. London Sect. A, 314 (1970), 457–472.

    Article  MATH  Google Scholar 

  13. E. H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1–6.

    Article  MATH  Google Scholar 

  14. M. Lucchesi, Free-energy functions for elastic-plastic material elements, Quart. Appl. Math., 51 (1993), 299–318.

    MathSciNet  MATH  Google Scholar 

  15. M. Lucchesi and P. Podio-Guidugli, Materials with elastic range: A theory with a view toward applications, Parts I and II, Arch. Rational Mech. Anal., 102 (1988), 23–43 and 110 (1990), 9-42.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Lucchesi and M. Šilhavý, Il’yushin’s conditions in non-isothermal plasticity, Arch. Rational Mech. Anal., 113 (1991), 121–163.

    Article  MATH  Google Scholar 

  17. M. Lucchesi and M. Šilhavý, Thermoplastic materials with combined hardening, Internat. J. Plasticity, 9 (1993), 291–315.

    Article  MATH  Google Scholar 

  18. A. Mielke, Finite Elastoplasticity, Lie Groups and Geodesics on SL(d), preprint, 2000.

    Google Scholar 

  19. C. B. Morrey, Jr., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966.

    MATH  Google Scholar 

  20. W. Noll, A new mathematical theory of simple materials, Arch. Rational Mech. Anal., 48 (1972), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Ortiz and E. A. Repetto, Nonconvex energy minimisation and dislocation in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397–462.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. R. Owen, Thermodynamics of materials with elastic range, Arch. Rational Mech. Anal., 31 (1968), 91–112.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. R. Owen, A mechanical theory of materials with elastic range, Arch. Rational Mech. Anal., 37 (1970), 85–110.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Perzyna and W. Kosiński, A mathematical theory of materials, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 21 (1973), 647–654.

    Google Scholar 

  25. A. C. Pipkin and R. S. Rivlin, Mechanics of rate-independent materials, Z. Angew. Math. Phys., 16 (1965), 313–326.

    Article  MathSciNet  Google Scholar 

  26. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  27. M. Šilhavý, On transformation laws for plastic deformations of materials with elastic range, Arch. Rational Mech. Anal., 63 (1977), 169–182.

    Article  MATH  Google Scholar 

  28. M. Šilhavý, On measures, convex cones, and foundation of thermodynamics, Czech. J. Phys., B30 (1980), 841–860 and 930-961.

    Google Scholar 

  29. M. Ši lhavý, The Mechanics and Thermodynamics of Continuous Media, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  30. M. Ši lhavý, On the Nonconvex Potentials for Elastic-Plastic Materials, in preparation, 2001.

    Google Scholar 

  31. R. Témam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Šilhavý, M. (2004). Work Conditions and Energy Functions for Ideal Elastic-Plastic Materials. In: Capriz, G., Mariano, P.M. (eds) Advances in Multifield Theories for Continua with Substructure. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8158-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8158-6_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6465-1

  • Online ISBN: 978-0-8176-8158-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics