Fractals and Multifractals

  • Stephen Lynch


  • To provide a brief introduction to fractals.

  • To introduce the notion of fractal dimension.

  • To provide a brief introduction to multifractals and define a multifractal formalism.

  • To consider some very simple examples.


Fractal Dimension Chaotic Attractor Iterate Function System Multifractal Analysis Multifractal Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. 1.
    S. L. Mills, G. Lees, C. Liauw, and S. Lynch, Dispersion assessment of flame retardent filler/polymer systems using a combination of X-ray mapping and multifractal analysis, Polymer Testing, 21-8 (2002), 941–948.CrossRefGoogle Scholar
  2. 2.
    M. Alber and J. Peinke, Improved multifractal box-counting algorithm, virtual phase transitions, and negative dimensions, Phys. Rev. E, 57-5 (1998), 5489–5493.CrossRefGoogle Scholar
  3. 3.
    K. J. Falconer and B. Laminering, Fractal properties of generalized Sierpiiiski triangles, Fractals, 6-1 (1998), 31–41.CrossRefGoogle Scholar
  4. 4.
    P. S. Addison, Fractals and Chaos: An Illustrated Course, Institute of Physics, Bristol, PA, 1997.CrossRefMATHGoogle Scholar
  5. 5.
    K. J. Falconer, Techniques in Fractal Geometry, Wiley, New York, 1997.MATHGoogle Scholar
  6. 6.
    Li Hua, D. Ze-jun, and Wu Ziqin, Multifractal analysis of the spatial distribution of secondary-electron emission sites, Phys. Rev. B, 53-24 (1996), 16631–16636.CrossRefGoogle Scholar
  7. 7.
    V. Silberschmidt, Fractal and multifractal characteristics of propagating cracks, J. Phys. IV, 6 (1996), 287–294.Google Scholar
  8. 8.
    R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett, Sudbury, MA, 1995.Google Scholar
  9. 9.
    J. Mach, F. Mas, and F. Sagués, Two representations in multifractal analysis, J. Phys. A Math. Gen., 28 (1995), 5607–5622.CrossRefMATHGoogle Scholar
  10. 10.
    J. Muller, O. K. Huseby, and A. Saucier, Influence of multifractal scaling of pore geometry on permeabilities of sedimentary rocks, Chaos Solitons Fractals, 5-8 (1995), 1485–1492.CrossRefGoogle Scholar
  11. 11.
    N. Sarkar and B. B. Chaudhuri, Multifractal and generalized dimensions of gray-tone digital images, Signal Processing, 42 (1995), 181–190.CrossRefMATHGoogle Scholar
  12. 12.
    S. Blacher, F. Brouers, R. Fayt, and P. Teyssié, Multifractal analysis: A new method for the characterization of the morphology of multicomponent polymer systems, J. Polymer Sci. B Polymer Phys., 31(1993), 655–662.CrossRefGoogle Scholar
  13. 13.
    H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York, 1992.CrossRefGoogle Scholar
  14. 14.
    H. A. Lauwerier, Fractals: Images of Chaos, Penguin, New York, 1991.Google Scholar
  15. 15.
    H.-O. Peitgen (ed.), E. M. Maletsky, H. Jürgens, T. Perciante, D. Saupe, and L. Yunker, Fractals for the Classroom: Strategic Activities, Vol. 1, Springer-Verlag, New York, 1991.CrossRefMATHGoogle Scholar
  16. 16.
    A. B. Chhabra, C. Meneveau, R. V. Jensen, and K. R. Sreenivasan, Direct determination of the f (α) singularity spectrum and its application to fully developed turbulence, Phys. Rev. A, 40-9 (1989), 5284–5294.CrossRefGoogle Scholar
  17. 17.
    T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities, Phys. Rev. A, 33 (1986), 1141.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations