Electromagnetic Waves and Optical Resonators

  • Stephen Lynch


  • To introduce some theory of electromagnetic waves.

  • To introduce optical bistability and show some related devices.

  • To discuss possible future applications.

  • To apply some of the theory of nonlinear dynamical systems to model a real physical system.


Electromagnetic Wave Bifurcation Diagram Chaotic Attractor Linear Stability Analysis Optical Bistability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. 1.
    G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Academic Press, New York, 2001.Google Scholar
  2. 2.
    G R Agrawal, Applications in Nonlinear Fiber Optics, Academic Press, New York, 2001.Google Scholar
  3. 3.
    R. Matthews, Catch the wave, New Scientist, 162-2189 (1999), 27–32.Google Scholar
  4. 4.
    H. Li and K. Ogusu, Analysis of optical instability in a double-coupler nonlinear fiber ring resonator, Optics Comm., 157 (1998), 27–32.CrossRefGoogle Scholar
  5. 5.
    S. Lynch, A. L. Steele, and J. E. Hoad, Stability analysis of nonlinear optical resonators, Chaos Solitons Fractals, 9-6 (1998), 935–946.CrossRefGoogle Scholar
  6. 6.
    K. Ogusu, A. L. Steele, J. E. Hoad, and S. Lynch, Corrections to and comments on “Dynamic behaviour of reflection optical bistability in a nonlinear fibre ring resonator,” IEEE J. Quantum Electron., 33 (1997), 2128–2129.CrossRefGoogle Scholar
  7. 7.
    A. L. Steele, S. Lynch, and J. E. Hoad, Analysis of optical instabilities and bistability in a nonlinear optical fiber loop mirror with feedback, Optics Comm., 137 (1997), 136–142.CrossRefGoogle Scholar
  8. 8.
    P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
  9. 9.
    Y. H. Ja, Multiple bistability in an optical-fiber double-ring resonator utilizing the Kerr effect, IEEE J. Quantum Electron., 30-2 (1994), 329-333.Google Scholar
  10. 10.
    Chao-Xiang Shi, Nonlinear fiber loop mirror with optical feedback, Optics Comm., 107 (1994), 276–280.CrossRefGoogle Scholar
  11. 11.
    N. J. Doran and D. Wood, Nonlinear-optical loop mirror, Optics Lett., 13 (1988), 56–58.CrossRefGoogle Scholar
  12. 12.
    H. M. Gibbs, Optical Bistability: Controlling Light with Light, Academic Press, New York, 1985.Google Scholar
  13. 13.
    S. D. Smith, Towards the optical computer, Nature, 307 (1984), 315–316.CrossRefGoogle Scholar
  14. 14.
    H. Natsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matouka, Observation of bifurcation to chaos in an all-optical bistable system, Phys. Rev. Lett., 50 (1983), 109–112.CrossRefGoogle Scholar
  15. 15.
    W. J. Firth, Stability of nonlinear Fabry-Perot resonators, Optics Comm., 39-5 (1981), 343–346.CrossRefGoogle Scholar
  16. 16.
    K. Ikeda, H. Daido, and O. Akimoto, Optical turbulence: Chaotic behavior of transmitted light from a ring cavity, Phys. Rev. Lett., 45-9 (1980), 709–712.CrossRefGoogle Scholar
  17. 17.
    P. W. Smith and E. H. Turner, A bistable Fabry-Perot resonator, Appl. Phys. Lett., 30-6 (1977), 280–281.CrossRefGoogle Scholar
  18. 18.
    T. Bischofberger and Y. R. Shen, Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferometer, Phys. Rev. A, 19 (1979), 1169–1176.CrossRefGoogle Scholar
  19. 19.
    J. H. Marburger and F. S. Felber, Theory of a lossless nonlinear Fabry-Perot interferometer, Phys. Rev. A, 17 (1978), 335–342.CrossRefGoogle Scholar
  20. 20.
    F. S. Felber and J. H. Marburger, Theory of nonresonant multistable optical devices, Appl. Phys. Lett., 28 (1976), 731.CrossRefGoogle Scholar
  21. 21.
    A. Szöke, V. Daneu, J. Goldhar, and N. A. Kurnit, Bistable optical element and its applications, Appl. Phys. Lett., 15 (1969), 376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations