• To introduce simple complex iterative maps.

  • To introduce Julia sets and the Mandelbrot set.

  • To carry out some analysis on these sets.


Periodic Orbit Unit Circle Unstable Fixed Point Argand Diagram Animate Discussion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading and Viewing

  1. 1.
    R. L. Devaney, The Mandelbrot and Julia Sets: A Tool Kit of Dynamics Activities, Key Curriculum Press, Emeryville, CA, 2002.Google Scholar
  2. 2.
    G W. Flake, The Computational Beauty of Nature: Computer Explorations of Fractals, MIT Press, Cambridge, MA, 1998.MATHGoogle Scholar
  3. 3.
    H.-O. Peitgen (ed.), E. M. Maletsky, H. Jürgens, T. Perciante, D. Saupe, and L. Yunker, Fractals for the Classroom: Strategic Activities, Vol. 2, Springer-Verlag, New York, 1994.Google Scholar
  4. 4.
    H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York, 1992.Google Scholar
  5. 5.
    H.-O. Peitgen, H. Jürgens, D. Saupe, and C Zahlten, Fractals: An Animated Discussion, Spektrum Akademischer Verlag, Heidelberg, 1989; W. H. Freeman, New York, 1990.Google Scholar
  6. 6.
    H.-O. Peitgen and R H. Richter, The Beauty of Fractals, Springer-Verlag, New York, 1986.CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations