Advertisement

Abstract

Aims and Objectives

Keywords

Neural Network Hide Layer Lyapunov Function Bifurcation Diagram Hide Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. [1]
    S. Lynch and Z. G Bandar, Analysis of a bistable neuromodule, preprint, 2004.Google Scholar
  2. [2]
    J. A. Rothwell, The word liar, New Scientist, March (2003), 51.Google Scholar
  3. [3]
    Z. G. Bandar, D. A. McLean, J. D. O’Shea, and J. A. Rothwell, Analysis of the Behaviour of a Subject, International Publication Number WO 02/087443 Al, 2002.Google Scholar
  4. [4]
    M. Di Marco, M. Forti, and A. Tesi, Existence and characterization of limit cycles in nearly symmetric neural networks, IEEE Trans. Circuits Systems 1: Fund. Theory Appl., 49 (2002), 979 - 992.CrossRefGoogle Scholar
  5. [5]
    R Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, Cambridge, MA, 2001.Google Scholar
  6. [6]
    I. W. Sandberg (ed.), J. T. Lo, C. L. Fancourt, J. C. Principe, S. Katagiri, and S. Haykin, Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, Adaptive Learning Systems for Signal Processing, Communications and Control Series, Wiley—Interscience, New York, 2001.Google Scholar
  7. [7]
    W. J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Perspectives in Neural Computing), Springer-Verlag, New York, 2000.CrossRefGoogle Scholar
  8. [8]
    B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice—Hall, Upper Saddle River, NJ, 1999.Google Scholar
  9. [9]
    F Pasemann, Driving neuromodules into synchronous chaos, in J. Mira and J. V. Sanchez-Andres, eds., Foundations and Tools for Neural Modeling, Lecture Notes in Computer Science 1606, Springer-Verlag, New York, 1999, 377 - 384.CrossRefGoogle Scholar
  10. [10]
    S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice—Hall, Upper Saddle River, NJ, 1998.Google Scholar
  11. [11]
    F. Pasemann, A simple chaotic neuron, Phys. D, 104 (1997), 205 - 211.MATHGoogle Scholar
  12. [12]
    M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design, Brooks—Cole, Pacific Grove, CA, 1995.Google Scholar
  13. [13]
    S. J. Schiff, K. Jerger, D. H. Doung, T. Chang, M. L. Spano, and W. L. Ditto, Controlling chaos in the brain, Nature, 370 (1994), 615.CrossRefGoogle Scholar
  14. [14]
    D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, 1986.Google Scholar
  15. [15]
    J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybernet., 52 (1985), 141 - 154.MathSciNetMATHGoogle Scholar
  16. [16]
    J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci., 81 (1984), 3088 - 3092.CrossRefGoogle Scholar
  17. [17]
    J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Pmc. Nat. Acad. Sci., 79 (1982), 2554-2558; reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing Foundations of Research, MIT Press, Cambridge, MA, 1988, 448-453.Google Scholar
  18. [18]
    T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybernet., 43 (1982), 59-69; reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing Foundations of Research, MIT Press, Cambridge, MA, 1988, 554-568.Google Scholar
  19. [19]
    M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.MATHGoogle Scholar
  20. [20]
    B. Widrow and M. E. Hoff, Adaptive switching circuits, in 1960 IRE WESCON Convention Record, Part 4, IRE, New York, 1960, 96 - 104.Google Scholar
  21. [21]
    E Rosenblatt, The perceptron: A probabalistic model for information storage and organization in the brain, Psychological Rev., 65 (1958), 386 - 408.MathSciNetCrossRefGoogle Scholar
  22. [22]
    D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949.Google Scholar
  23. [23]
    W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115 - 133.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations