Aims and Objectives


Neural Network Hide Layer Lyapunov Function Bifurcation Diagram Hide Neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. [1]
    S. Lynch and Z. G Bandar, Analysis of a bistable neuromodule, preprint, 2004.Google Scholar
  2. [2]
    J. A. Rothwell, The word liar, New Scientist, March (2003), 51.Google Scholar
  3. [3]
    Z. G. Bandar, D. A. McLean, J. D. O’Shea, and J. A. Rothwell, Analysis of the Behaviour of a Subject, International Publication Number WO 02/087443 Al, 2002.Google Scholar
  4. [4]
    M. Di Marco, M. Forti, and A. Tesi, Existence and characterization of limit cycles in nearly symmetric neural networks, IEEE Trans. Circuits Systems 1: Fund. Theory Appl., 49 (2002), 979 - 992.CrossRefGoogle Scholar
  5. [5]
    R Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, Cambridge, MA, 2001.Google Scholar
  6. [6]
    I. W. Sandberg (ed.), J. T. Lo, C. L. Fancourt, J. C. Principe, S. Katagiri, and S. Haykin, Nonlinear Dynamical Systems: Feedforward Neural Network Perspectives, Adaptive Learning Systems for Signal Processing, Communications and Control Series, Wiley—Interscience, New York, 2001.Google Scholar
  7. [7]
    W. J. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Perspectives in Neural Computing), Springer-Verlag, New York, 2000.CrossRefGoogle Scholar
  8. [8]
    B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice—Hall, Upper Saddle River, NJ, 1999.Google Scholar
  9. [9]
    F Pasemann, Driving neuromodules into synchronous chaos, in J. Mira and J. V. Sanchez-Andres, eds., Foundations and Tools for Neural Modeling, Lecture Notes in Computer Science 1606, Springer-Verlag, New York, 1999, 377 - 384.CrossRefGoogle Scholar
  10. [10]
    S. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice—Hall, Upper Saddle River, NJ, 1998.Google Scholar
  11. [11]
    F. Pasemann, A simple chaotic neuron, Phys. D, 104 (1997), 205 - 211.MATHGoogle Scholar
  12. [12]
    M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design, Brooks—Cole, Pacific Grove, CA, 1995.Google Scholar
  13. [13]
    S. J. Schiff, K. Jerger, D. H. Doung, T. Chang, M. L. Spano, and W. L. Ditto, Controlling chaos in the brain, Nature, 370 (1994), 615.CrossRefGoogle Scholar
  14. [14]
    D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1, MIT Press, Cambridge, MA, 1986.Google Scholar
  15. [15]
    J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybernet., 52 (1985), 141 - 154.MathSciNetMATHGoogle Scholar
  16. [16]
    J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci., 81 (1984), 3088 - 3092.CrossRefGoogle Scholar
  17. [17]
    J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Pmc. Nat. Acad. Sci., 79 (1982), 2554-2558; reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing Foundations of Research, MIT Press, Cambridge, MA, 1988, 448-453.Google Scholar
  18. [18]
    T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybernet., 43 (1982), 59-69; reprinted in J. A. Anderson and E. Rosenfeld, eds., Neurocomputing Foundations of Research, MIT Press, Cambridge, MA, 1988, 554-568.Google Scholar
  19. [19]
    M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.MATHGoogle Scholar
  20. [20]
    B. Widrow and M. E. Hoff, Adaptive switching circuits, in 1960 IRE WESCON Convention Record, Part 4, IRE, New York, 1960, 96 - 104.Google Scholar
  21. [21]
    E Rosenblatt, The perceptron: A probabalistic model for information storage and organization in the brain, Psychological Rev., 65 (1958), 386 - 408.MathSciNetCrossRefGoogle Scholar
  22. [22]
    D. O. Hebb, The Organization of Behavior, Wiley, New York, 1949.Google Scholar
  23. [23]
    W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115 - 133.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations