The Second Part of Hilbert’s Sixteenth Problem

  • Stephen Lynch


To describe the second part of Hilbert’s sixteenth problem.


Jordan Curve Polynomial System Annular Region Quadratic System Local Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. 1.
    Y. Il’yashenko, Centennial history of Hilbert’s 16th problem, Bull. Amer. Math. Soc., 39-3 (2002), 301-354.MathSciNetCrossRefGoogle Scholar
  2. 2.
    C. J. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12 (1999), 1099-1112.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    H. Giacomini and S. Neukirch, Improving a method for the study of limit cycles of the Liénard equation, Phys. Rev. E, 57 (1998), 6573-6576.MathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Dumortier and L. Chengzhi, Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    F. Dumortier and L. Chengzhi, On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations, Nonlinearity, 9 (1996), 1489-1500.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    C. J. Christopher and N. G. Lloyd, Polynomial systems: A lower bound for the Hilbert numbers, Proc. Roy. Soc. London Ser. A, 450 (1995), 219-224.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    H. Zoladek, Eleven small limit cycles in a cubic vector field, Nonlinearity, 8 (1995), 843-860.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    T. R. Blows and C. Rousseau, Bifurcation at infinity in polynomial vector fields, J. Differential Equations, 104 (1993), 215-242.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhang Zhifen, Ding Tongren, Huang Wenzao, and Dong Zhenxi, Qualitative Theory of Differential Equations, Translation of Mathematical Monographs 102, American Mathematical Society, Providence, 1992.Google Scholar
  10. 10.
    H. N. Moreira, Liénard-type equations and the epidemiology of malaria, Ecol. Model., 60 (1992), 139-150.CrossRefGoogle Scholar
  11. 11.
    Yu. Il yashenko, Finiteness Theorems for Limit Cycles, Translations of Mathematical Monographs 94, American Mathematical Society, Providence, 1991.Google Scholar
  12. 12.
    W. A. Coppel, Some quadratic systems with at most one limit cycle, in U. Kirchgraber and H. O. Walther, eds., Dynamics Reported, Vol. 2, Wiley/Teubner, New York/Stuttgart, 1988, 61-68.Google Scholar
  13. 13.
    J. Ecalle, J. Martinet, J. Moussu, and J. P. Ramis, Non-accumulation des cycles-limites I, C. R. Acad. Sci. Paris Sér. I Math., 304 (1987), 375-377.MathSciNetMATHGoogle Scholar
  14. 14.
    Li Jibin and Li Chunfu, Global bifurcation of planar disturbed Hamiltonian systems and distributions of limit cycles of cubic systems,Acta. Math. Sinica, 28 (1985), 509-521.MathSciNetMATHGoogle Scholar
  15. 15.
    T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Cambridge Philos. Soc., 95 (1984), 359-366.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Shi Songling, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica A, 23 (1980), 153-158.MATHGoogle Scholar
  17. 17.
    A. Lins, W. de Melo, and C. Pugh, On Liénards equation with linear damping, in J. Palis and M. do Carno, eds., Geometry and Topology III, Lecture Notes in Mathematics 597, Springer-Verlag, Berlin, 1977, 335-357.Google Scholar
  18. 18.
    L. A. Cherkas, Conditions for a Liénard equation to have a center, Differentsialnye Uravneniya, 12 (1976), 201-206.Google Scholar
  19. 19.
    G S. Rychkov, The maximum number of limit cycles of the system = ya 0 xa 1 x 3a 2 x 5, = − x is two, Differentsialnye Uravneniya, 11 (1973), 380-391.Google Scholar
  20. 20.
    K. S. Sibirskii, The number of limit cycles in the neighbourhood of a critical point, Differential Equations, 1 (1965), 36-47.Google Scholar
  21. 21.
    N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium point of focus or center type, Amer. Math. Soc. Trans., 5 (1962), 396-414.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations