Poincaré Maps and Nonautonomous Systems in the Plane

  • Stephen Lynch


Aims and Objectives


Saddle Point Hamiltonian System Phase Portrait Bifurcation Diagram Unstable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. 1.
    S. Lynch, Dynamical Systems with Applications Using Maple, Birkhäuser, Boston, 2001.CrossRefMATHGoogle Scholar
  2. 2.
    C-ODE-E (Consortium for ODE Experiments), ODE Architect: The Ultimate ODE Power Tool, Wiley, New York, 1999.Google Scholar
  3. 3.
    E. S. Cheb-Terrab and H. P. de Oliveira, Poincaré sections of Hamiltonian systems, Comput. Phys. Comm., 95 (1996), 171.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 3 rd ed., Springer-Verlag, New York, 1990.Google Scholar
  5. 5.
    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Math., 7 (1881), 375-422; oeuvre, Gauthier-Villars, Paris, 1890.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen Lynch
    • 1
  1. 1.Department of Computing and MathematicsManchester Metropolitan UniversityManchesterUK

Personalised recommendations