Skip to main content

Min-Max Sliding-Mode Control

  • Chapter
The Robust Maximum Principle

Abstract

This chapter deals with the Min-Max Sliding-Mode Control design where the original linear time-varying system with unmatched disturbances and uncertainties is replaced by a finite set of dynamic models such that each one describes a particular uncertain case including exact realizations of possible dynamic equations as well as external bounded disturbances. Such a trade-off between an original uncertain linear time-varying dynamic system and a corresponding higher order multimodel system with complete knowledge leads to a linear multimodel system with known bounded disturbances. Each model from a given finite set is characterized by a quadratic performance index. The developed Min-Max Sliding-Mode Control strategy gives an optimal robust sliding-surface design algorithm, which is reduced to a solution of the equivalent LQ Problem that corresponds to the weighted performance indices with weights from a finite-dimensional simplex. An illustrative numerical example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubin, J. (1979), Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Boltyanski, V., & Poznyak, A. (1999b), ‘Robust maximum principle in minimax control’, Int. J. Control 72(4), 305–314.

    Article  MathSciNet  Google Scholar 

  • Boltyanski, V.G., & Poznyak, A.S. (2002a), ‘Linear multi-model time optimization’, Optim. Control Appl. Methods 23, 141–161.

    Article  MathSciNet  Google Scholar 

  • Boltyanski, V.G., & Poznyak, A.S. (2002b), ‘Robust maximum principle for a measured space as uncertainty set’, Dyn. Syst. Appl. 11, 277–292.

    MathSciNet  MATH  Google Scholar 

  • Dorling, C., & Zinober, A. (1986), ‘Two approaches to hyperplane design in multivariable variable structure control systems’, Int. J. Control 44, 65–82.

    Article  Google Scholar 

  • Edwards, C., & Spurgeon, S. (1998), Sliding Mode Control: Theory and Applications, Taylor and Francis, London.

    MATH  Google Scholar 

  • Fridman, L. (2002), ‘Sliding mode control for systems with fast actuators: Singularity perturbed approach’, in Variable Structure Systems: Towards the 21st Century (X. Yu & J.X. Xu, eds.), Vol. 274 of Lecture Notes in Control and Information Science, Springer, London, pp. 391–415.

    Chapter  Google Scholar 

  • Fridman, L., & Levant, A. (2002), ‘Higher order sliding modes’, in Sliding Mode Control in Engineering (W. Perruquetti & J.P. Barbot, eds.), Vol. 11 of Control Engineering Series, Dekker, New York, pp. 53–102.

    Chapter  Google Scholar 

  • Khalil, H. (1980), ‘Approximation of Nash strategies’, IEEE Trans. Autom. Control AC-25(2), 247–250.

    Article  MathSciNet  Google Scholar 

  • Poznyak, A., Duncan, T., Pasik-Duncan, B., & Boltyanski, V. (2002a), ‘Robust maximum principle for multi-model LQ-problem’, Int. J. Control 75(15), 1770–1777.

    Article  MathSciNet  Google Scholar 

  • Poznyak, A., Shtessel, Y., & Jimenez, C. (2003), ‘Min-max sliding-mode control for multimodel linear time varying systems’, IEEE Trans. Autom. Control 48(12), 2141–2150.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y. (1996), ‘Principle of proportional damages in multiple criteria LQR problem’, IEEE Trans. Autom. Control 41(3), 461–464.

    Article  MathSciNet  Google Scholar 

  • Shtessel, Y., Hall, C., & Jackson, M. (2000), ‘Reusable launch vehicle control in multiple time-scale sliding modes’, J. Guid. Control Dyn. 23(6), 1013–1020.

    Article  Google Scholar 

  • Tam, H.K., Ho, D.W.C., & Lam, J. (2002), ‘Robust hyperplane synthesis for sliding mode control systems via sensitivity minimization’, Optim. Control Appl. Methods 23, 125–139.

    Article  MathSciNet  Google Scholar 

  • Utkin, V. (1991), Slides Modes in Control and Optimization, Springer, Berlin.

    Google Scholar 

  • Utkin, V., Guldner, J., & Shi, J. (1999), Sliding Mode Control in Electromechanical Systems, Taylor and Francis, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir G. Boltyanski .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boltyanski, V.G., Poznyak, A.S. (2012). Min-Max Sliding-Mode Control. In: The Robust Maximum Principle. Systems & Control: Foundations & Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8152-4_13

Download citation

Publish with us

Policies and ethics