Gap Phenomenon in Modeling of Suboptimal Controls to Parabolic Optimal Control Problems in Thick Multistructures

Part of the Systems & Control: Foundations & Applications book series (SCFA)


In this chapter, we study the asymptotic behavior of the following class of the parabolic optimal control problems (OCPs)
$$I_{\varepsilon}(u_{\varepsilon},y_{\varepsilon})=\int_0^T\int_{\Omega^{+}}(y_{\varepsilon}- q_0)^2 \,\mathrm{d} x\,\mathrm{d} t \, +\,\int_0^T\int_{\Gamma_{\varepsilon}}u^2_{\varepsilon}\,\mathrm{d} x^\prime \,\mathrm{d} t \longrightarrow \inf,$$
$$\left.\begin{array}{rcll}y^\prime_{\varepsilon}-\Delta_x \ y_{\varepsilon}+y_{\varepsilon}& = & f_{\varepsilon} &\quad \text{ in} \ (0,T)\times \Omega_{\varepsilon},\\\partial_{\nu} y_{\varepsilon}& = & - \varepsilon \,k_0y_{\varepsilon}& \quad \text{ on } \ (0,T)\times S_{\varepsilon},\\y_{\varepsilon}& = & u_{\varepsilon}& \quad \text{ on } \ (0,T)\times \Gamma_{\varepsilon},\\\partial_{\nu} y_{\varepsilon}& = & 0 & \quad \text{ on } \ (0,T)\times \partial\Omega_{\varepsilon}\setminus \left(\Gamma_{\varepsilon}\cup S_{\varepsilon}\right),\\y_{\varepsilon}(0,x) & = & y^0_{\varepsilon}& \quad \text{ a.e. } \ x\in \Omega_{\varepsilon}\end{array}\right\}$$
as a small parameter ε tends to 0.


Admissible Control Convergent Sequence Limit Problem Compactness Property Admissible Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics and Mechanics, Department of Differential EquationsOles Honchar Dnipropetrovsk National UniversityDnipropetrovskUkraine
  2. 2.Department of Mathematics, Chair of Applied Mathematics IIFriedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations