Spin-Weighted Spherical Harmonics. Applications

  • G. F. Torres del Castillo
Part of the Progress in Mathematical Physics book series (PMP, volume 32)


The orthonormal basis, {er, eθ, eφ}, induced by the spherical coordinates (r, θ, ø) is related to the spinor o given in (2.6) by means of
$${e_r} = {o^\dag }\sigma o,\quad {e_\theta } + i{e_\phi } = {o^t}\varepsilon \sigma o$$
[cf. (1.26) and (1.43)] and the transformation (2.13) produces the rotation through α about er given by
$${e_r} \mapsto {e_r},\quad {e_\theta } + i{e_\phi } \mapsto {e^{i\alpha }}({e_\theta } + i{e_\phi }).$$


Vector Field Spherical Harmonic Helmholtz Equation Magnetic Monopole Radial Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • G. F. Torres del Castillo
    • 1
  1. 1.Instituto de CienciasUniversidad Autonoma de PueblaPueblaMexico

Personalised recommendations