Advertisement

Lecture 4

  • Eugene E. Tyrtyshnikov

Abstract

A matrix A ∈ ℂ n×n is row-wise diagonally dominant if
$$ |a_{ii} | > r_i \equiv \sum\limits_{\begin{array}{*{20}c} {j = 1} \\ {j \ne i} \\ \end{array} }^n {|a_{ij} |, i = 1,...,n,} $$
(4.1.1)
and column-wise diagonally dominant if
$$ |a_{jj} | > c_j \equiv \sum\limits_{\begin{array}{*{20}c} {i = 1} \\ {i \ne j} \\ \end{array} }^n {|a_{ij} |, j = 1,...,n.} $$
(4.1.2)

Keywords

Condition Number Analytic Perturbation Simple Eigenvalue Lower Triangular Matrix Multiple Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eugene E. Tyrtyshnikov
    • 1
  1. 1.Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations