Skip to main content

Tumor Heterogeneity and Growth Control

  • Chapter

Abstract

Tumor growth control is described especially as it pertains to tumor heterogeneity. Four facets heterogeneity are reviewed; statistical or distributional heterogeneity, epigenetic or environmental heterogeneity, emergence of intrinsic or clonal heterogeneity, and the development of clonal subpopulations in a heterogeneous micro-environment. A model of tumor growth and its control is developed. Growth control is defined for a heterogeneous tumor composed of a cycling, proliferative compartment and a non-cycling, quiescent one. The paradigm for this form of heterogeneity is hypoxia in a solid tumor. It is used to establish a linkage between the carrying capacity of a tumor-bearing host for its tumor burden. The model is then applied to three disparate tumor growth phenomena. Each study is accompanied by an exploration of what we know (the experimental and clinical literature describing the phenomenon), what we think we know (a summary of the underlying growth processes we surmise accounts for the phenomenon), what we wish we know (areas which are still unexplored in the laboratory or clinic), and a description of the experiment and its analysis (a means of gathering and analyzing the missing information to complete a picture of the phenomenon in question).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam J.A. and Maggelakis S.A., Diffusion regulated growth characteristics of the spherical prevascular carcinoma, Bull. Math. Biol., 52 (1990), 549–582.

    MATH  Google Scholar 

  2. Asaga T., Suzuki K., Umeda M., Sugimasa Y., Takemiya S., and Okamoto T., The enhancement of tumor growth after partial hep-atectomy and the effect of sera obtained from hepatectomized rats on tumor cell growth, Japanese J. Surg., 21 (1991), 669–675.

    Article  Google Scholar 

  3. Brattain M.G., Fine W.D., Khaled F.M., Thompson J., and Brattain D.E., Heterogeneity of malignant cells from a human colonic carcinoma, Cancer Res., 41 (1981), 1751–1756.

    Google Scholar 

  4. Bronk B.V., Dienes G.J., and Paskin A., The stochastic theory of cell proliferation, Biophys. J., 8 (1968), 1353–1398.

    Article  Google Scholar 

  5. Ciampi, Kates A.L., Buick R., Kruikov Y., and Till J.E., Multi-type Galton-Watson process as a model for proliferating human tumour cell populations derived from stem cells: Estimation of the stem cell self-renewal probabilities in human ovarian carcinomas, Cell Tissue Kinet., 19 (1986), 129–140.

    Google Scholar 

  6. Coldman A.J. and Goldie J.H., A model for the resistance of tumor cells to cancer chemotherapeutic agents, Math. Biosci., 65 (1983), 291–307.

    Article  MATH  Google Scholar 

  7. Coldman A.J., Goldie J.H., and Ng V., The effects of cellular differentiation on the development of permanent drug resistance, Math. Biosci., 74 (1985), 177–198.

    Article  MATH  Google Scholar 

  8. Day R.S., A branching process model for heterogeneous cell populations, Math. Biosci., 78 (1986), 73–90.

    Article  MathSciNet  MATH  Google Scholar 

  9. Durrant L.G., Watson S.A., Hall A., and Morris D.L., Co-stimulation of gastrointestinal tumor cell growth by gastrin, transforming growth factor-α and insulin-like growth factor-1, Br. J. Cancer, 63 (1991), 67–70.

    Article  Google Scholar 

  10. Dye E.S., Role of concomitant antitumor immunity in restraining tumor metastases, in Mechanisms of Host Resistance to Infectious Agents, Tumors, and Allografts, Steinman R.M. and North R.J. eds., Rockefeeler University Press (1986), 197–411.

    Google Scholar 

  11. Ehrlich P., Experimentelle Coarcinomatuien an Mausen, Arb. Koniglichen Inst. Exp. Ther. Frankfurt, 1 (1906), 65–103.

    Google Scholar 

  12. Fausto N., Growth factors in liver development, regeneration, and carcinogenesis, Progress in Growth Factor Research, 3 (1991), 219–234.

    Article  Google Scholar 

  13. Fidler I.J., Orthotopic implantation of human colon carcinoma into nude mice provides a valuable model for the biology and therapy of metastasis, Cancer and Metastat. Rev., 10 (1991), 229–243.

    Article  Google Scholar 

  14. Fisher B. and Fisher E.R., Experimental studies of factors influencing hepatic metastases I. The effect of the number of tumor cells injected and the time of growth, Cancer, 12 (1959), 926–928.

    Article  Google Scholar 

  15. Fisher B. and Fisher E.R., Experimental studies of factors influencing hepatic metastases II. Effect of partial hepatectomy, Cancer, 11 (1959), 929–932.

    Article  Google Scholar 

  16. Fisher B. and Fisher E.R., Experimental studies of factors influencing hepatic metastases III. Effect of surgical trauma with special reference to liver injury, Ann. Surg., 150 (1959), 731–744.

    Article  Google Scholar 

  17. Fujiwara K., Nagoshi S., Ohno A., Hirata K., Ohta Y., Mochida S., Tomiya T., Higashio K., and Kurokawa K., Stimulation of liver growth by exogenous human hepatocyte growth factor in normal and partial hepatectomized rats, Hepatology, 18 (1993), 1443–1449.

    Article  Google Scholar 

  18. Gahary A., Minuk G.Y., Lao J., Gauthier T., and Murphy L.J., Effects of partial hepatectomy on hepatic insulin-like growth factor binding protein-1 expression, Hepatology, 15 (1992), 1125–1131.

    Article  Google Scholar 

  19. Gatenby R.A., Population ecology issues in tumor growth, Cancer Res., 51 (1991), 2542–2547.

    Google Scholar 

  20. German J., Chromosomal Mutation and Neoplasia, Alan R. Liss (1983).

    Google Scholar 

  21. Goldie J.H. and Coldman A.J., A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat. Rep., 63 (1979), 1727–1733

    Google Scholar 

  22. Goldie J.H. and Coldman A.J., The genetic origin of drug resistance in neoplasms: Implications for systemic therapy, Cancer Treat. Rep., 67 (1984), 923–931.

    Google Scholar 

  23. Goldie J.H., Coldman A.J., and Gudauskas G.A., Rationale for the use of alternating non-cross-resistant chemotherapy, Cancer Treat. Rep., 66 (1982), 439–449.

    Google Scholar 

  24. Goel N.S., Maitra S.C., and Montroll E.W., On the Volterra and other nonlinear models of interacting populations, Rev. Modern Physics, 43 (1971), 231–276.

    Article  MathSciNet  Google Scholar 

  25. Gorelik E., Concomitant tumor immunity and resistance to a second tumor challenge, Adv. Cancer Res., 39 (1983), 71–120.

    Article  Google Scholar 

  26. Gyllenberg M. and Webb G.F., Quiescence as an explanation of Gompertzian tumor growth, Vanderbilt University Technical Report MAT-A264 (1989).

    Google Scholar 

  27. Gyllenberg M. and Webb G.F., A nonlinear structured population model of tumor growth with quiescence, J. Math. Biol., 28 (1990), 671–694.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gyori I., Michelson S., and Leith J.T., Time-dependent subpop-ulation induction in heterogeneous tumors, Bull. Math. Biol., 50 (1988), 681–696.

    MathSciNet  MATH  Google Scholar 

  29. Harris T.E., In The Kinetics of Cell Proliferation, Stohlman F. ed., Grune and Stratton (1959).

    Google Scholar 

  30. Heppner G.H., Tumor heterogeneity, Cancer Res., 44 (1984), 2259–2265.

    Google Scholar 

  31. Heppner G.H., Miller B.E., and Miller F.R., Tumor subpopulation interactions in neoplasms, Biochim. Biophys. Acta, 695 (1983), 215–226.

    Google Scholar 

  32. Jansson B. and Revesz L., Analysis of the growth of tumor cell populations, Math. Biosci., 19 (1975), 131–154.

    Article  Google Scholar 

  33. Kan M., Huan J., Mansson P., Yamsumitsu H., Carr B., and McK-eehan W., Heparin-binding growth factor type II (acidic fibroblast growth factor): A potential biphasic autocrine and paracrine regulator of hepatocyte regeneration, Proc. Natl. Acad. Sci., 86 (1989), 7432–7436.

    Article  Google Scholar 

  34. Kendal W.S., Gompertzian growth as a consequence of tumor heterogeneity, Math. Biosci., 73 (1985), 103–107.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuzcek T. and Chan T.C.K., Mathematical modeling for tumor resistance, JNCI, 80 (1988), 146–147.

    Article  Google Scholar 

  36. Leith J.T., Harrigan P., Padfield G., and Michelson S., Modification of growth rates and hypoxic fractions of xenografted A431 tumors by sialoadenectomy or exogenously supplied epidermal growth factor, Cancer Res., 51 (1991), 4111–4113.

    Google Scholar 

  37. Leith J.T., Padfield G., and Michelson S., Effects of partial hep-atectomy on the growth characteristics and hypoxic fractions of xenografted DLD-2 human colon cancers, Rad. Res., 132 (1992), 263–268.

    Article  Google Scholar 

  38. Leith J.T., Papa G., Quaranto L., and Michelson S., Modification of the volumetric growth responses and steady state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin, Br. J. Cancer, 66 (1992), 345–348.

    Article  Google Scholar 

  39. Leith J.T. and Michelson S., Tumor radiocurability: Relationship to intrinsic tumor heterogeneity and the tumor bed effect, Inv. and Metast., 10 (1990), 329–351.

    Google Scholar 

  40. Leith J.T., Michelson S., Faulkner L.E., and Bliven S., Growth properties of artificial heterogeneous human colon tumors, Cancer Res., 47 (1987), 1045–1051.

    Google Scholar 

  41. Leith J.T., Faulkner L.E., Bliven S.F., and Michelson S., Tumor bed expression in xenografted artificial heterogeneous colon tumors, Int. J. Radiat. Oncol. Biol. Phys., 15 (1988), 151–158.

    Article  Google Scholar 

  42. Leith J.T., Faulkner L.E., Bliven S.F., and Michelson S., Compositional stability of artificial heterogeneous tumors in vivo: Use of Mitomycin C as a cytotoxic probe, Cancer Res., 48 (1988), 2669–2673.

    Google Scholar 

  43. Loizidou M.C., Lawerence R.J., Holt S., Carty N.J., Cooper A.J., Alexander P., and Taylor I., Facilitation by partial hepatectomy of tumor growth within the rat liver following intraportal injection of syngeneic tumor cells, Clin, and Exp. Metastasis, 9 (1991), 335–349.

    Article  Google Scholar 

  44. Marusic M., Bajzer Z., Freyer J.P., and Vuk-Pavlovic S., Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif., 27 (1994), 73–94.

    Article  Google Scholar 

  45. Marusic M. and Vuk-Pavlovic S., Prediction power of mathematical models for tumor growth, J. Biol. Sys., 1 (1993), 69–78.

    Article  Google Scholar 

  46. Matsumoto K. and Nakamura T., Hepatocyte growth factor: molecular structure, roles in liver regeneration, and other biological factors, Crit. Revs, in Oncogenesis, 3 (1992), 27–54.

    Google Scholar 

  47. Mead J.E. and Fausto N., Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism, Proc. Natl. Acad. Sci., 86 (1989), 1558–1562.

    Article  Google Scholar 

  48. Michelson S., Miller B.E., Glicksman A.S., and Leith J.T., Tumor microecology and competitive interactions, J. Theor. Biol., 128 (1987), 233–246.

    Article  MathSciNet  Google Scholar 

  49. Michelson S. and Leith J.T., Autocrine and paracrine growth factors in tumor growth, Bull. Math. Biol., 53 (1991), 639–656.

    Google Scholar 

  50. Michelson S. and Leith J.T., The autocrine-paracrine-endocrine triad of tumor growth control, in Proceedings of Third International Conference on Communications and Control, Victoria, B.C., Oct. 16-18 1991, Mohler R.H. and Wells W. eds., Vol. 2 (1992), 481–490.

    Google Scholar 

  51. Michelson S. and Leith J.T., Growth factors and growth control of heterogeneous cell populations, Bull. Math. Biol., 55 (1992), 993–1011.

    Google Scholar 

  52. Michelson S. and Leith J.T., Dormancy, regression, and recurrence: Towards a unifying theory of tumor growth control, J. Theor. Biol., 169 (1994), 327–338.

    Article  Google Scholar 

  53. Michelson S. and Leith J.T., Interlocking triads of growth control in tumors, Bull. Math. Biol., 57 (1995), 345–366.

    MATH  Google Scholar 

  54. Michelson S., Tran H., Ito K., and Leith J.T., Stochastic models for subpopulation emergence in heterogeneous tumors, Bull. Math. Biol., 51 (1989), 731–747.

    MATH  Google Scholar 

  55. Michelson S., Comparison of stochastic models for tumor escape, in Immunology and Epidemiology, Hoffman G.W. and Hraba T. eds., Lecture Notes in Biomathematics, Vol. 65, Springer-Verlag (1986).

    Google Scholar 

  56. Michelson S., Immune surveillance: Towards a tumor specific model, in Theoretical Immunology, Part II, Perelson A. ed., Ad-dison-Wesley (1988), 37–56.

    Google Scholar 

  57. Michelson S., A system for Monte Carlo simulation of heterogeneous tumor cell populations, in Mathematical Models in Medicine: Diseases and Epidemics, Adv. Math. and Computers in Med., 20 (1990), 139–148.

    Google Scholar 

  58. Michelson S. and Leith J.T., Environmental stress induced by the tumor bed effect leads to subpopulation exclusion within heterogeneous neoplasms: Modeling studies, Radiation Res., 115 (1988), 533–542.

    Article  Google Scholar 

  59. Michelson S. and Leith J.T., Effects of differential cell kill on the dynamic composition of heterogeneous tumors, in Mathematical Models in Medicine: Diseases and Epidemics, Adv. Math, and Computers in Med., 20 (1990), 149–160.

    Google Scholar 

  60. Michelson S. and Leith J.T., A theoretical explanation of “Concomitant Resistance”, Bull. Math. Biol., 57 (1995), 733–747.

    MATH  Google Scholar 

  61. Mohn K.L., Melby A.E., Tewari D.S., Laz T.M., and Taub R., The gene encoding rat insulin-like growth factor binding protein-1 is rapidly and highly increased in regenerating liver, Molec. Cell Biol, 11 (1991). 1393–1401.

    Google Scholar 

  62. Namieno T., Takeichi N., Hata Y., Uchinao J., and Kobayashi H., Kinetic changes of liver regeneration and hepatocellular carcinoma cells after partial hepatectomy in rats, Gastroenterologia Japonica, 26 (1991), 29–36.

    Google Scholar 

  63. Nowell P.C., Mechanisms of tumor progression, Cancer Res., 44 (1986), 3801–3805.

    Google Scholar 

  64. O’Reilly M.S., Holmgren L., Shing Y., Chen C., Rosenthal R.A., Moses M., Lane W.S., Chao Y., Sage E.H., and Folkman J., Angio-statin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis Lung carcinoma, Cell, 79 (1994), 315–328.

    Article  Google Scholar 

  65. Panis Y., Ribeiro J., Chretien Y., and Nordlinger B., Dormant liver metastases: An experimental study, Br. J. Surg., 79 (1992), 221–223.

    Article  Google Scholar 

  66. Paschkis K.E., Cantarow A., Stasney J., and Hobbs J.H., Tumor growth in partially hepatectomized rats, Cancer Res., 15 (1955), 579–582.

    Google Scholar 

  67. Poste G., Doll J., and Fidler I.J., Interactions among clonal subpop-ulations affect stability of the metastatic phenotype in polyclonal populations of the B16 melanoma cell, PNAS, 78 (1981), 6226–6230.

    Article  Google Scholar 

  68. Poste G., Greig R., Tzeng J., Koestler T., and Corwin S., Interactions between tumor cell subpopulations in malignant tumors, in Cancer and Metastases: Biological and Therapeutic Aspects, Nicolson G.L. and Milas L. eds., Raven Press (1984).

    Google Scholar 

  69. Prehn R.T., The inhibition of tumor growth by tumor mass, Cancer Res., 51 (1991),.

    Google Scholar 

  70. Prehn R.T., Two competing influences that may explain concomitant tumor resistance, Cancer Res., 53 (1993), 3266–3269.

    Google Scholar 

  71. Roberts A.B., Anzano M.A., Wakefield L.M., Roche N.S., Stern D.F., and Sporn M.B., Type beta transforming growth factor: A bifunctional regulator of cellular growth, PNAS, 82 (1985), 119–123.

    Article  Google Scholar 

  72. Rockwell S., Effect of host age on the transplantation, growth, and radiation response of EMT6 tumors, Cancer Res., 41 (1981), 527.

    Google Scholar 

  73. Rubin J.S., Chan A.M., Bottaro D.P., Burgess W.H., Taylor W.G., Cech A.C., Hirschfeld D.W., Wong J., Miki T., Finch P.W., and Aaronson S.A., A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor, Proc. Natl. Acad. Sci., 88 (1991), 415–419.

    Google Scholar 

  74. Rubinow S.I., A maturity-time representation for cell populations, Biophysical J., 8 (1968), 1055–1073.

    Article  Google Scholar 

  75. Rubinow S.I., A simple model of a steady state differentiating cell system, J. Cell Biol., 43 (1969), 32–39.

    Article  Google Scholar 

  76. Ruggerio R.A., Buatuoabad O.D., Bonfil R.D., Meiss R.P., and Pasqualini C.D., “Concomitant immunity” in murine tumors of non-detectable immunogenicity, Br. J. Cancer, 51 (1985), 37–48.

    Article  Google Scholar 

  77. Ruggerio R.A., Buatuoabad O.D., Cramer P., Bonfil R.D., and Pasqualini C.D., Correlation between seric antitumor activity and concomitant resistance in mice bearing nonimmunogenic tumors, Cancer Res., 50 (1990), 7159–7165.

    Google Scholar 

  78. Schimke R.T., Gene amplification, drug resistance, and cancer, Cancer Res., 44 (1984), 1735–1742.

    Google Scholar 

  79. Schimke R.T., Gene amplification in cultured cells, J. Biol. Chem., 44 (1988), 1735–1742.

    Google Scholar 

  80. Stoll B.A., Spontaneous regression of cancer: New insights, Bio-therapy, 4 (1992), 23–30.

    Google Scholar 

  81. Truco E., Mathematical models for cellular systems: The Von Foer-ster equation. Part I, Bull. of Math. Biophys., 27 (1965), 283–303.

    Google Scholar 

  82. Truco E., Mathematical models for cellular systems: The Von Foer-ster equation. Part II, Bull, of Math. Biophys., 27 (1965), 449–471.

    Article  Google Scholar 

  83. Tucker S.L., Cell population models with continuous structure variables, in Cancer Modeling, Brown B.W. and Thompson J.R. eds., Marcel Decker (1987).

    Google Scholar 

  84. Von Foerster H., Some remarks on changing populations, in The Kinetics of Cellular Proliferation, Stohlman F. ed., Grune and Stratton (1959).

    Google Scholar 

  85. Webb G.F., A nonlinear cell population model of periodic chemotherapy treatment, WSSIAA, 1 (1992), 569–583.

    Google Scholar 

  86. Wette R., Katz I.N., and Rodin E.Y., Stochastic processes for solid tumor kinetics I. Surface regulated growth, Math. Biosci., 19 (1974), 231–255.

    Article  MATH  Google Scholar 

  87. Wette R., Katz I.N., and Rodin E.Y., Stochastic processes for solid tumor kinetics II. Diffusion regulated growth, Math. Biosci., 19 (1974), 311–338.

    Article  Google Scholar 

  88. Wijsman J.H., Cornelisse C.J., Keijzer R., van de Velde C.J.H., and van Dierendonck J.H., A prolactin-dependent, metastasizing rat mammary carcinoma as a model for endocrine related tumour dormancy, Br. J. Cancer, 64 (1991), 463–468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michelson, S., Leith, J.T. (1997). Tumor Heterogeneity and Growth Control. In: Adam, J.A., Bellomo, N. (eds) A Survey of Models for Tumor-Immune System Dynamics. Modeling and Simulation in Science, Engineering, & Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8119-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8119-7_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6408-8

  • Online ISBN: 978-0-8176-8119-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics