Advertisement

Introduction

  • Paul H. Rabinowitz
  • Edward W. Stredulinsky
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 81)

Abstract

The goal of this memoir is to study the partial differential equation
$$-\Delta u + F_u (x, u) = 0, \quad x \in \mathbb{R}^n,$$
where F satisfies
$$F \in C^2 (\mathbb{R}^n \times \mathbb{R}, \mathbb{R})$$
(F1)
and
$$F\ {\rm is}\ 1 - {\rm periodic\ in}\ {x_1}, \cdots, x_n\ {\rm and \ in} \, u.$$
(F2)

Keywords

Basic Solution Homoclinic Solution Heteroclinic Solution Spatial Reversibility Phase Transition Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of MathematicsUniversity of Wisconsin-Rock CountyJanesvilleUSA

Personalised recommendations