Generalized Frames: Key to Analysis and Synthesis

  • Gerald Kaiser
Part of the Modern Birkhäuser Classics book series (MBC)


In this chapter we develop a general method of analyzing and reconstructing signals, called the theory of generalized frames. The windowed Fourier transform and the continuous wavelet transform are both special cases. So are their manifold discrete versions, such as those described in the next four chapters. In the discrete case the theory reduces to a well-known construction called (ordinary) frames. The general theory shows that the results obtained in Chapters 2 and 3 are not isolated but are part of a broad structure. One immediate consequence is that certain types of theorems (such as reconstruction formulas, consistency conditions, and least-square approximations) do not have to be proved again and again in different settings; instead, they can be proved once and for all in the setting of generalized frames. Since the field of wavelet analysis is so new, it is important to keep a broad spectrum of options open concerning its possible course of development. The theory of generalized frames provides a tool by which many different wavelet-like analyses can be developed, studied, and compared.


Consistency Condition Continuous Wavelet Coefficient Function Counting Measure Tight Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 2011

Authors and Affiliations

  1. 1.Center for Signals and WavesAustinUSA

Personalised recommendations