Windowed Fourier Transforms

  • Gerald Kaiser
Part of the Modern Birkhäuser Classics book series (MBC)


Fourier series are ideal for analyzing periodic signals, since the harmonic modes used in the expansions are themselves periodic. By contrast, the Fourier integral transform is a far less natural tool because it uses periodic functions to expand nonperiodic signals. Two possible substitutes are the windowed Fourier transform (WFT) and the wavelet transform. In this chapter we motivate and define the WFT and show how it can be used to give information about signals simultaneously in the time domain and the frequency domain. We then derive the counterpart of the inverse Fourier transform, which allows us to reconstruct a signal from its WFT. Finally, we find a necessary and sufficient condition that an otherwise arbitrary function of time and frequency must satisfy in order to be the WFT of a time signal with respect to a given window and introduce a method of processing signals simultaneously in time and frequency.


Uncertainty Principle Instantaneous Frequency Inverse Fourier Transform Window Function Chirp Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 2011

Authors and Affiliations

  1. 1.Center for Signals and WavesAustinUSA

Personalised recommendations