Unitary Systems and Bessel Generator Multipliers

Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


A Bessel generator multiplier for a unitary system is a bounded linear operator that sends Bessel generator vectors to Bessel generator vectors. We characterize some special (but useful) Bessel generator multipliers for the unitary systems that are ordered products of two unitary groups. These include the wavelet and the Gabor unitary systems. We also provide a detailed exposition of some of the history leading up to this work.


Tight Frame Unitary System Wavelet Frame Gabor Frame Wavelet System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Balan, A study of Weyl-Heisenberg and wavelet frames, Ph. D. Thesis, Princeton University, 1998.Google Scholar
  2. 2.
    M. Bownik, Connectivity and density in the set of framelets Math. Res. Lett. 14 (2007), 285–293.Google Scholar
  3. 3.
    M. Bownik, The closure of the set of tight frame wavelets, Acta Appl. Math. 107 (2009), 195–201.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    X. Dai and Y. Diao, The path-connectivity of s-elementary tight frame wavelets, J. Appl. Funct. Anal. 2 (2007), no. 4, 309–316.MathSciNetMATHGoogle Scholar
  5. 5.
    X. Dai, Y. Diao and Q. Gu, Frame wavelets with frame set support in the frequency domain, Illinois J. Math. 48 (2004), no. 2, 539–558.MathSciNetMATHGoogle Scholar
  6. 6.
    X. Dai, Y. Diao, Q. Gu and D. Han, The S-elementary frame wavelets are path connected, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2567–2575.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    X. Dai, Y. Diao, Q. Gu and D. Han, Frame wavelets in subspaces of L 2( d), Proc. Amer. Math. Soc. 130 (2002), no. 11, 3259–3267.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    X. Dai and D. Larson, Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998), no. 640.Google Scholar
  9. 9.
    J. Gabardo and D. Han, Subspace Weyl-Heisenberg frames, J. Fourier Anal. Appl. 7 (2001), 419–433.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    J-P. Gabardo and D. Han, Aspects of Gabor analysis and operator algebras. Advances in Gabor analysis, 129–152, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2003Google Scholar
  11. 11.
    J-P. Gabardo and D. Han, Frame representations for group-like unitary operator systems, J. Operator Theory 49 (2003), 223–244.MathSciNetMATHGoogle Scholar
  12. 12.
    J-P. Gabardo and D. Han, The uniqueness of the dual of Weyl-Heisenberg subspace frames, Appl. Comput. Harmon. Anal. 17 (2004), no. 2, 226–240.Google Scholar
  13. 13.
    J-P. Gabardo, D. Han and D. Larson, Gabor frames and operator algebras, Wavelet Applications in Singnal and Image Analysis, Proc. SPIE. 4119 (2000), 337–345.CrossRefGoogle Scholar
  14. 14.
    G. Garrigós, Connectivity, homotopy degree, and other properties of α-localized wavelets on R, Publ. Mat. 43 (1999), no. 1, 303–340.MathSciNetMATHGoogle Scholar
  15. 15.
    G. Garrigós, E. Hernández, H. Šikić and F. Soria, Further results on the connectivity of Parseval frame wavelets, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3211–3221.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. Garrigós, E. Hernández, H. Šikić, F. Soria, G. Weiss and E. Wilson, Connectivity in the set of tight frame wavelets (TFW), Glas. Mat. Ser. III. 38(58) (2003), no. 1, 75–98.Google Scholar
  17. 17.
    G. Garrigós and D. Speegle, Completeness in the set of wavelets, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1157–1166.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    D. Han, Approximations for Gabor and wavelet frames, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3329–3342.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D. Han, Frame Representations and Parseval Duals with Applications to Gabor Frames, Trans. Amer. Math. Soc. 360(2008), 3307–3326.Google Scholar
  20. 20.
    D. Han and D. Larson, Frames, bases and group parametrizations, Mem. Amer. Math. Soc. 697 (2000).Google Scholar
  21. 21.
    D. Han and D. Larson, Wandering vector multipliers for unitary groups, Trans. Amer. Math. Soc. 353(2001), 3347–3370Google Scholar
  22. 22.
    D. Han and D. Larson, On the orthogonality of frames and the density and connectivity of wavelet frames, Acta Appl. Math. 107 (2009), 211–222.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    D. Han, Q. Sun and W. Tang, Topological and geometric properties of refinable functions and MRA affine frames, Appl. Comput. Harm. Anal. to appear.Google Scholar
  24. 24.
    E. Hernández, and G. Weiss, A First Course on Wavelets CRC Press, 1996.Google Scholar
  25. 25.
    E. Hernández, X. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. I. J. Fourier Anal. Appl. 2 (1996), no. 4, 329–340.Google Scholar
  26. 26.
    E. Hernández, X. Wang and G. Weiss, Smoothing minimally supported frequency wavelets. II., J. Fourier Anal. Appl. 3 (1997), no. 1, 23–41.Google Scholar
  27. 27.
    G. Ji and K. Saito, On wandering vector multipliers for unitary groups, Proc. Amer. Math. Soc. 133 (2005), 3263–3269.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I and II Academic Press, Inc. 1983 and 1985.Google Scholar
  29. 29.
    D. Larson, Von Neumann algebras and wavelets. Operator algebras and applications (Samos, 1996), 267–312, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 495, Kluwer Acad. Publ., Dordrecht, 1997.Google Scholar
  30. 30.
    D. Larson, Frames and wavelets from an operator-theoretic point of view. Operator algebras and operator theory (Shanghai, 1997), 201–218, Contemp. Math., 228, Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  31. 31.
    D. Larson, Unitary systems and wavelet sets. Wavelet analysis and applications, 143–171, Appl. Numer. Harmon. Anal., Birkhäuser Basel, 2007.Google Scholar
  32. 32.
    D. Larson, Unitary systems, wavelet sets, and operator-theoretic interpolation of wavelets and frames, Gabor and Wavelet Frames, World Scientific (2007), 166–214.Google Scholar
  33. 33.
    R. Liang, Wavelets, their phases, multipliers and connectivity, Ph. D. Thesis, University of North Carolina-Charlotte, 1998.Google Scholar
  34. 34.
    M. Paluszynski, H. Šikic, G. Weiss and S. Xiao, Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. in Comp. Math. 18 (2003), 297–327.Google Scholar
  35. 35.
    G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Notes. Cambridge Univ. Press (2003).Google Scholar
  36. 36.
    D. Speegle, Ph. D. thesis, Teaxs A& M University, 1997.Google Scholar
  37. 37.
    D. Speegle, The s -elementary wavelets are path-connected, Proc. Amer. Math. Soc. Vol 127 (1999), 223–233.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    V. S. Varadarajan, Geometry of Quantum Theory Second Edition, Springer-Verlag, New York–Berlin, 1985.Google Scholar
  39. 39.
    Wutam Consortium, Basic Properties of Wavelets, J. Fourier Anal. Appl. Vol 4, no. 4–5 (1998), 575-594Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations