Denoising Speech Signals for Digital Hearing Aids: A Wavelet Based Approach

  • Nathaniel Whitmal
  • Janet Rutledge
  • Jonathan Cohen
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This study describes research developing a wavelet based, single microphone noise reduction algorithm for use in digital hearing aids. The approach reduces noise by expanding the observed speech in a series of implicitly filtered, shift-invariant wavelet packet basis vectors. The implicit filtering operation allows the method to reduce correlated noise while retaining low-level high-frequency spectral components that are necessary for intelligible speech. Recordings of speech in automobile road noise at signal-to-noise ratios of 0, 5, 10, 15, and 20 dB were used to evaluate the new method. Objective measurements indicate that the new method provides better noise reduction and lower signal distortion than previous wavelet-based methods, and produces output free from audible artifacts of conventional FFT methods. However, trials of the Revised Speech Perception in Noise test with the new algorithm showed no significant improvement in speech perception. Subsequent analysis has shown that the algorithm imposes physical attenuation on low-intensity components that mimics the perceptual effects of mild hearing loss.


Hearing Loss Speech Signal Noise Reduction Wavelet Packet Minimum Description Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Special Issue on diffusion maps and wavelets, Appl. Comput. Harmon. Anal. 21, (2006).Google Scholar
  2. 2.
    J. Berger, R. Coifman, M. Goldberg, Removing noise from music using local trigonometric bases and wavelet packets, Jour. Audio Eng. Soc., 808-818, (1994).Google Scholar
  3. 3.
    R. Bilger, J. Nuetzel, W. Rabinowitz and C. Rzeczowski, Standardization of a test of speech perception in noise, J. Speech Hear. Res., 27, 32-48 (1984).Google Scholar
  4. 4.
    S. Boll, Suppression of acoustic noise in speech using spectral subtraction, IEEE Trans. Accoustics, Speech, and Sig. Proc. 27, 113-120, (1979).Google Scholar
  5. 5.
    S. Boll, Speech enhancement in the 1980’s: noise suppression with patern matching. In S. Furui and M. Sondhi, editors, Advances in Speech Signal Processing, Marcel Dekker, 309-326.Google Scholar
  6. 6.
    G. Box and G. Jenkins, Time Series Analysis-Forecasting and Control, Holden Day, San Francisco, Ca., (1970).Google Scholar
  7. 7.
    J.C. Bremer, R.R. Coifman, M. Maggioni, A.D. Szlam, Diffusion wavele packets, Appl. Comput. Harmon. Anal. 21, 95-112, (2006).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    R. Brey, M. Robinette, D. Chabries and R.W. Christiansen, Improvement in speech intelligibility in noise employing an adaptive filter with normal and hearing-impaired subjects, Jour. Rehab. Res. and Dev. 24, 75-86, (1987).CrossRefGoogle Scholar
  9. 9.
    D. Byrne and H. Dillon, The National Acoustics Laboratories’ (NAL) new procedure for selecting the gain and frequency response of a hearing aid, Ear and Hearing, vol. 7, 257265, 1986.Google Scholar
  10. 10.
    D. Chabries, R.W. Christiansen, R. Brey, M. Robinette, R. Harris, Application of adaptive digital signal processing to speech inhancement for the hearing impaired, Jour. Rehab. Res. and Dev., 24 65-74, (1987).Google Scholar
  11. 11.
    H. Chipman, E. Kolaczyk and R. McCulloch, Signal de-noising using adaptive Bayesian wavelet shrinkage, Proc. IEEE-SP Intl. Symp. Time-Freq, Time Scale Anal., 225-228, (1996).Google Scholar
  12. 12.
    R. Coifman and D. Donoho, Translation-invariant de-noising. In A. Antoniadis, editor, Wavelets and Statistics, Springer-Verlag.Google Scholar
  13. 13.
    R. Coifman, M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21, 53-94, (2006).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    R. Coifman and F. Majid, Adaptive waveform analysis and denoising. In Y. Meyer and S. Roques, editors, Progress in Wavelet Analysis and Applications, 63-76, (1993).Google Scholar
  15. 15.
    R. Coifman and N. Saito, Local discriminant bases and their applications, J. Math. Imag. Vision 5 (1995) 337-358.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    R. Coifman and V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory 38, (1992), 713-738.MATHCrossRefGoogle Scholar
  17. 17.
    I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. on Pure and Appl. Math. 4, (1988) 909-996.MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Donoho, Unconditional bases are optimal bases for data compression and for statistical estimation, Appl. Comput. Harmonic Analysis 1, (1993) 100-115.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D. Donoho and I. Johnstone, Ideal spatial adaptation via wavelet shrinkage, Biometrika 81, 425-455, (1994).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    D. Donoho, I. Johnstone and G. Kerkyacharian and D. Picard Wavelet Shrinkage: Asymptopia? J. Royal Stat. Soc. Ser. B. 2 301-337, (1995).Google Scholar
  21. 21.
    A.J. Duquesnoy and R. Plomp, The effect of a hearing aid on the speech-reception threshold of hearing-impaired listeners in quiet and in noise, Jour. Acoust. Soc. Amer., vol. 83, pp. 2166-2173, 1983.CrossRefGoogle Scholar
  22. 22.
    L.A. Drake, J.C. Rutledge and J. Cohen, Wavelet Analysis in Recruitment of Loudness Compensation, IEEE Transactions on Signal Processing, Dec.1993.Google Scholar
  23. 23.
    C.W. Dunnett, A multiple comparison procedure for comparing several treatments to a control, Jour. Amer. Stat. Assoc., vol. 50, 1096-1121. 1955.MATHCrossRefGoogle Scholar
  24. 24.
    P. Duchnowski and P.M. Zurek, Villchur revisited: another look at automatic gain control of simulation of recuiting hearing loss, J. acoust. Soc. Amer. 98, 6, pp. 3170-3181 (1995).CrossRefGoogle Scholar
  25. 25.
    Y. Ephraim and D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, IEEE ATrans. Accoust. Speech Sig. Proc. 32, (1984) 1109-1122CrossRefGoogle Scholar
  26. 26.
    Y. Ephraim, D. Malah and B. Juang, On the applications of hidden Markov models for enhancing noisy speech, IEEE ATrans. Accoust. Speech Sig. Proc. 32, (1984) 1846-1856.Google Scholar
  27. 27.
    Y. Ephraim and H.L. Van Trees, A signal subspace approach for speech enhancement, Proc. ICASSP 1993, volume 2, (1993) 355-358.Google Scholar
  28. 28.
    Y. Ephraim and H.L. Van Trees, A signal subspace approach for speech enhancement, IEEE Trans. Speech Audio Proc. 3, (1995) 251-266.CrossRefGoogle Scholar
  29. 29.
    Y. Ephraim and H.L. Van Trees, M. Nilsson and S. Soli, Enhancement of noisy speech for the hearing impaired using the signal subspace approach. In Proc. NIH Interdisciplinary Forum on Hearing Aid Research and Development (1996).Google Scholar
  30. 30.
    D. Graupe, J. Grosspietsch, and S. Basseas, A single-microphone-based self-adaptive filter of noise from speech and its performance evaluation. Jour. Rehab. Res. Dev. 24, (1987) 119-126.Google Scholar
  31. 31.
    R. Gray, On the asymptotic eigenvalue distribution of Toeplitz matrices, IEEE Trans. Inf. Theory 18, (1972) 725-730.MATHCrossRefGoogle Scholar
  32. 32.
    J.P. Gagne, Excess masking among listeners with a sensorineural hearing loss, Jour. Acoust. Soc. Amer., vol. 81, pp. 2311-2321, 1988.CrossRefGoogle Scholar
  33. 33.
    J. Greenberg and P. Zurek, Evaluation of an adaptive beamforming method for hearing aids, J. Acoust. Soc. Amer. 91, 1662-1676, (1992).CrossRefGoogle Scholar
  34. 34.
    C.S. Hallpike and J.D. Hood, Observation upon the neurological mechanism of the loudness recruitment phenomenon, Acta Oto-Laryng. 50, pp. 472-486, (1959).CrossRefGoogle Scholar
  35. 35.
    IEEE, IEEE recommended practice for speech quality measurements, IEEE Trans. Audio Electroacoustics, pp. 227-246, (1969).Google Scholar
  36. 36.
    A. Jansen and P. Niyogi, Intrinsic Fourier analysis on the manifold of speech sounds, Proc. International Conferene on Accoustics, Speech, and Signal Processing, Toulose, France, 2006.Google Scholar
  37. 37.
    M. Jansen, Noise reduction by wavelet thresholding, Springer Verlag, (2001).Google Scholar
  38. 38.
    J. Kates, Speech enhancement based on a sinusoidal model, J. Speech Hear. Res. 37, 449-464, (1994).Google Scholar
  39. 39.
    M.C. Killion, The K-Amp hearing aid: an attempt to present high fidelity for persons with impaired hearing, Amer. J. Audiology, pp. 52-74, (1993)Google Scholar
  40. 40.
    S. Kochkin, MarkeTrak III: Why 20 million in US do not use hearing aids for their hearing loss, Hearing J. 46, pp. 1-8, (1993).Google Scholar
  41. 41.
    S. Kochkin, MarkeTrak III: 10-year Customer satisfaction trends in the US Hearing Instrument Market, Hearing Rev. 9, pp. 1-8, (2002).Google Scholar
  42. 42.
    S. Kochkin, MarkeTrak VII: Customer satisfaction with hearing instruments in the digital age, Hearing J. 58, pp. 30-39, (2005).Google Scholar
  43. 43.
    H. Levitt, A historical perspective on digital hearing aids: how digital technology has changed modern hearing aids, Trends in Amplification 11, pp. 7-24, (2007).MathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Lang, H. Guo, J. Odegard, J. Burrus and R. Wells, Non-linear processing of a shift invariant DWT for noise reduction, IEEE Sig. Proc. Letters 3, 10-12, (1995).CrossRefGoogle Scholar
  45. 45.
    H. Levitt, M. Bakke, J. kates, A. Neuman, T. Schwander and M. Weiss, Signal processing for hearing impairment, Scand. Audiol. Supplement 38, 7-19, (1993).Google Scholar
  46. 46.
    J. Lim, editor, Speech Enhancement, Prentice Hall, aenglewood Cliffs, N.J. (1983).Google Scholar
  47. 47.
    J. Lim and A. Oppenheim, All-pole modeling of degraded speech, IEEE Trans. Acoust. Speech Sig. Proc. 26, 197-209, (1978).MATHCrossRefGoogle Scholar
  48. 48.
    H. Levitt and S.B. Resnick, Speech reception by the hearing impaired: methods of testing and the development of new tests, Scand. Audiol. Supp. 6, pp. 107-130, (1978).Google Scholar
  49. 49.
    J. Makhoul and R. McAulay, Removal of noise from noise-degraded speech, Technical report, National Academy of Sciences, National Academy Press, Washington, D.C. (1989).Google Scholar
  50. 50.
    S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. and Machine Intell. 11, 674-693, (1989).MATHCrossRefGoogle Scholar
  51. 51.
    R. McAulay and M. Malpass, Speech enhancement using a soft-decision noise suppression filter, IEEE Trans. Acoust. Speech Sig. Proc. 28, 137-145, (1980).CrossRefGoogle Scholar
  52. 52.
    E.S. Martin and J.M. Pickett, Sensironeural hearing loss and upward spread of masking, Jour. Speech Hear. Res., vol. 13, pp. 426-437, 1970.Google Scholar
  53. 53.
    J.C. Pesquet, H. Krim and H. Carfantan, Time-invariant orthonormal wavelet representations, IEEE Trans. Sig. Proc. 44, (1996) 1964-1970.CrossRefGoogle Scholar
  54. 54.
    P. Peterson, N. Durlach, W. Rabinowitz and P. Zurek, Multimicrophone adaptive beamforming for interference reduction in hearing aids, J. Rehab. Res. Dev. 24, 102-110, (1987).Google Scholar
  55. 55.
    J. Porter and S. Boll, Optimal estimators for spectral resoration of noisy speech. In Proc. ICASSP 1984, volume 1, page 18A.2.Google Scholar
  56. 56.
    S. Quackenbush, T. Barnwell and M. Clements, Objective measures of Speech Quality, Prentice Hall, Englewood Cliffs, N.J. (1993).Google Scholar
  57. 57.
    J.C. Rutledge, Speech Enhancement for Hearing Aids, in Time-Frequency and Wavelet Transforms in Biomedicine, Metin Akay, Editor, IEEE Press, 1997.Google Scholar
  58. 58.
    J. Rissanen, Modeling by shortest data description, Automatica 14, 465-471, (1978).MATHCrossRefGoogle Scholar
  59. 59.
    T. Roos, P. Myllymaki and J. Rissanen, MDL Denoising Revisited, IEEE Transactions on Signal Processing, vol. 57, No. 9, 3347-3360, (2009).MathSciNetCrossRefGoogle Scholar
  60. 60.
    N. Saito, Simultaneous noise suppression and signal compression using a library of orthonormal and signal compression using a library of orthonormal bases and the minimum description length criterion. In E. Foufoula-Georgiou and P. Kumar, editors, Wavelets in Geophysics, academic Press (1994).Google Scholar
  61. 61.
    C. Sammeth and M. Ochs, A review of current “noise reduction” hearing aids: rationale, assumptions and efficacy, Ear and Hearing 12, 116S-124S (1991).CrossRefGoogle Scholar
  62. 62.
    T. Schwander and H. Levitt, Effect of two-microphone noise reduction on speech recognition by normal-hearing listeners, Jour. rehab. res. and Dev. 24, (1987) 87-92.Google Scholar
  63. 63.
    R. Schwartz, M. Berouti and J. Makhoul, Enhancement of speech corrupted by acoustic noise, ICASSP-79 Proceedings, page 208 (1979).Google Scholar
  64. 64.
    D. Sinha and A. Tewfik, Low bit rate transparent audio compression using adapted wavelets, IEEE Trans. Sig. Proc. 41, 3463-3479, (1993).MATHCrossRefGoogle Scholar
  65. 65.
    M. Smith and T. Barnwell, Exact reconstruction techniques for tree-structured subband coders, IEEE Trans. Acoust.Sig. Proc. 34, 434-441, (1986).CrossRefGoogle Scholar
  66. 66.
    C. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Stat. 9, 6, pp. 1135-1151, (1981).MATHCrossRefGoogle Scholar
  67. 67.
    R. Tyler and F. Kuk, The effects of “noise suppression” hearing aids on sonsonant recognition in speech-babble and low-frequency noise,. Ear and hearing 10, 243-249, (1989).CrossRefGoogle Scholar
  68. 68.
    A.R. Thornton and M.J.M. Raffin, Speech discrimination scores modeled as a binomial variable, Jour. Speech Hear. Res., vol. 21, pp. 507-518, 1978.Google Scholar
  69. 69.
    B. Vidakovic, Non-linear wavelet shrinkage with Bayes rules and Bayes factors, Discussion Paper 94-24, Duke University (1994).Google Scholar
  70. 70.
    J. Verschure and P.P.G. Van Benthem, Effect of hearing aids on speech perception in noisy situations, Audiology, vol. 31, pp. 205-221, 1992.CrossRefGoogle Scholar
  71. 71.
    W. Voiers, Diagnostic acceptability measure for speech communication systems. In Proc. ICASSP 1977,  pages 204-207, (1977).Google Scholar
  72. 72.
    S. Watanabe, Karhunen-Loève expansion and factor analysis: Theoretical remarks and applications, Trans. 4th Prague Conf. Inform. Theory, Statist. Decision Functions, rand. Proc., 635-660, Prague Publishing House of the czechoslovak Academy of Sciences, (1967).Google Scholar
  73. 73.
    N. Whitmal, Wavelet-Based Noise reduction for Speech Enhancement, PhD thesis, Northwestern University, Evanston, Il. (1997).Google Scholar
  74. 74.
    N. Whitmal, J. Rutledge and J. Cohen, Reducing correlated noise in digital hearing aids, IEEE Eng. Med. Biol. Mag. 15, 88-96, (1996).CrossRefGoogle Scholar
  75. 75.
    N. Whitmal, J. Rutledge and J. Cohen, Reduction of autoregressive noise with shift-invariant wavelet packets, Proc. IEEE-SP Symp. Time-Freq. Time-Scale Analysis, pp. 137-140, (1996).Google Scholar
  76. 76.
    G. Wornell (1990). A Karhunen-Loève-like expansion for 1/f processes via wavelets, IEEE Trans. Inf. Theory 36, 859-861, (1990).Google Scholar
  77. 77.
    N. Whitmal and A. Vosoughi, Recruitment of loudness effects of attenuative noise reduction algorithms, J. Acoust. Soc. Amer. vol. 111, Issue 5, p. 2380, (2002), (Conference Proceedings).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathaniel Whitmal
  • Janet Rutledge
  • Jonathan Cohen
    • 1
  1. 1.Department of MathematicsDePaul UniversityChicagoUSA

Personalised recommendations