Advertisement

Wavelets, a Numerical Tool for Atmospheric Data Analysis

  • Parick Fischer
  • Ka-Kit Tung
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

Multiresolution methods, such as the wavelet decompositions, are increasingly used in physical applications where multiscale phenomena occur. We present in this review paper two applications illustrating that the classical 30-year-old continuous wavelets are still used and useful in physics. In the first part, using a Continuous Wavelet Transform (CWT) for the determination of local QBO (Quasi-Biennial Oscillation) period, we reexamine the previous finding that the period of the QBO in the lower stratosphere is longer during solar minima. In the second part, we use a wavelet-based multifractal approach to describe qualitatively and quantitatively the complex temporal patterns of atmospheric data. Time series of geopotential height are used in this study. More detailed versions of these results have already been published in dedicated papers.

Keywords

Partition Function Solar Cycle Mother Wavelet Continuous Wavelet Transform Singularity Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research was supported by the National Science Foundation, Climate Dynamics Program, under grant ATM-0332364, and the DGA (French Defense Department) under contract 06.60.018.00.470.75.01.

References

  1. 1.
    Angel J.K.: On the variation in period and amplitude of the quasi-biennial oscillation in the equatorial stratosphere 1951–1985, Monthly Weather Rev., 114, 2272–2278 (1986).CrossRefGoogle Scholar
  2. 2.
    Arneodo, A., Grasseau, G., Holschneider, M.: Wavelet transform of multifractals, Phys. Rev. Lett., 61, 2281–2284 (1988).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arneodo, A., Bacry, E., Muzy, J.F.: The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232–275 (1995).CrossRefGoogle Scholar
  4. 4.
    Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., Muzy, J.F.: Ondelettes, multifractales et turbulence, Diderot Editeur, Paris, France (1995).Google Scholar
  5. 5.
    Bacry, E., Muzy, J.F., Arneodo, A.: Singularity spectrum of fractals signal from wavelet analysis: Exact results, J. Stat. Phys., 70, 635–674 (1993).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
  7. 7.
    Fischer P, Tung K.K.: Wavelets, a numerical tool for multiscale phenomena: from two-dimensional turbulence to atmospheric data analysis., J. Num. Anal. And Mod., 5, 64–84 (2008).Google Scholar
  8. 8.
    Fischer P, Tung K.K., Wavelet-based Multifractal Analysis of atmospheric data, Draft version.Google Scholar
  9. 9.
    Hamilton, K.: On the quasi-decadal modulation of the stratospheric QBO period, J. Climate, 15, 2562–2565 (2002).CrossRefGoogle Scholar
  10. 10.
    Hamilton, K., Hsieh, W.: Representation of the quasi-biennial oscillation in the tropical stratospheric wind by nonlinear principal component analysis, J. Geophys. Res., 10 D15, 4232, 10.1029/2001JD001250 (2002).Google Scholar
  11. 11.
    Jaffard, S.: Multifractal formalism for functions Part I: Results valid for all functions, SIAM J. Math. Anal., 28, 944-970 (1997).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Jaffard, S.: Multifractal formalism for functions Part II: Self-similar functions, SIAM J. Math. Anal., 28, 971–998 (1997).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mallat, S., Zhong, S.: Wavelet transform maxima and multiscale edges, in: R.M. B. et al. (Eds.), Wavelets and their Applications, Jones and Bartlett, Boston (1991).Google Scholar
  14. 14.
    Mallat, S.: A wavelet tour of signal processing, Academic Press, New York (1998).MATHGoogle Scholar
  15. 15.
    Muzy, J.F., Bacry, E., Arneodo, A.: Wavelets and multifractal formalism for singular signals: application to turbulence data, Phys. Rev. Lett., 67, 3515–3518 (1991).CrossRefGoogle Scholar
  16. 16.
    NOAA-CIRES Climate Diagnostics Center in Boulder, Colorado, USA, http://www.cdc.noaa.gov
  17. 17.
    Salby, M., Callaghan, P.: Connection between the solar cycle and the QBO: The missing link, J. Climate, 13, 2652–2662 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut de Mathématiques de BordeauxUniversité Bordeaux 1Talence CedexFrance

Personalised recommendations