Wavelets on Manifolds and Statistical Applications to Cosmology

  • Daryl Geller
  • Azita Mayeli
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We outline how many of the pioneering ideas that were so effective in developing wavelet theory on the real line, can be adapted to the manifold setting. In this setting, however, arguments using Fourier series are replaced by methods from modern harmonic analysis, pseudodifferential operators and PDE. We explain how to construct nearly tight frames on any smooth, compact Riemannian manifold, which are well-localized both in frequency (as measured by the Laplace–Beltrami operator) and in space. These frames can be used to characterize Besov spaces on the manifold for the full range of indices, in analogy to the Frazier–Jawerth result on the real line. We explain how our methods can be extended beyond the study of functions, to the wavelet analysis of sections of a particular line bundle on the sphere, which is important for the analysis of the polarization of CMB(cosmic microwave background radiation). The wavelet approach to CMB has been advocated by many people, including our frequent collaborators, the statistician Domenico Marinucci, and the physicist Frode Hansen, who earlier used spherical needlets to study CMB temperature.


Line Bundle Besov Space Pseudodifferential Operator Tight Frame Wavelet Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-P. Antoine and P. Vandergheynst, Wavelets on the sphere: a group-theoretic approach, Applied and Computational Harmonic Analysis, 7 (1999), 262–291.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J.-P. Antoine and P. Vandergheynst, Wavelets on the sphere and other conic sections, Journal of Fourier Analysis and its Applications, 13 (2007), 369–386.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, Asymptotics for Spherical Needlets, Annals of Statistics, 37 (2009), 1150–1171.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques and M. Morvidone, Stereographic wavelet frames on the sphere, Appl. Comput. Harmon. Anal. 19 (2005), 223–252.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    M. Cruz, L. Cayon, E. Martinez-Gonzalez, P. Vielva, J. Jin, The non-Gaussian cold spot in the 3-year WMAP data, Astrophysical Journal 655 (2007), 11–20.CrossRefGoogle Scholar
  6. 6.
    M. Cruz, L. Cayon, E. Martinez-Gonzalez, P. Vielva, P. The non-Gaussian cold spot in WMAP: significance, morphology and foreground contribution, Monthly Notices of the Royal Astronomical Society 369 (2006), 57–67.Google Scholar
  7. 7.
    I. Daubechies, Ten Lectures on Wavelets, Philadelphia, Pennsylvania, 1992.MATHGoogle Scholar
  8. 8.
    M. Frazier and B. Jawerth, Decomposition of Besov Spaces, Ind. Univ. Math. J. 34 (1985), 777–799.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere, With Applications to Geomathematics, Clarendon Press, Oxford (1998).MATHGoogle Scholar
  10. 10.
    W. Freeden and M. Volker, Multiscale Potential Theory, Birkhauser, Boston (2004).MATHGoogle Scholar
  11. 11.
    D. Geller, F.K. Hansen, D. Marinucci, G. Kerkyacharian and D. Picard, Spin needles for cosmic microwave background polarization data analysis, Physical Review D, D78:123533 (2008), arXiv:0811.2881Google Scholar
  12. 12.
    D. Geller, X. Lan and D. Marinucci, Spin needlets spectral estimation, Electronic Journal of Statistics 3 (2009), 1497–1530, arXiv:0907.3369.Google Scholar
  13. 13.
    D. Geller and D. Marinucci, Spin wavelets on the sphere, Journal of Fourier Analysis and Applications, 16 (2010), 840–884, arXiv:0811:2835.Google Scholar
  14. 14.
    D. Geller and A. Mayeli, Continuous wavelets and frames on stratified Lie groups I, Journal of Fourier Analysis and Applications 12 (2006), 543–579.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    D. Geller and A. Mayeli, Continuous wavelets on compact manifolds, Math. Z. 262 (2009), 895–927.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    D. Geller and A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Math. Z. 263 (2009), 235–264.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    D. Geller and A. Mayeli, Nearly tight frames of spin wavelets on the sphere, to appear in Sampling Theory in Signal and Image Processing (2011), arXiv:0907.3164.Google Scholar
  18. 18.
    D. Geller and A. Mayeli, Besov spaces and frames on compact manifolds, Indiana University Math Journal 58 (2009), 2003–2042.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    D. Geller and I. Pesenson, Band-limited Localized Parseval frames and Besov spaces on Compact Homogeneous Manifolds, to appear, Journal of Geometric Analysis, arXiv:1002.3841, DOI: 10.1007/s12220-010-9150-3.Google Scholar
  20. 20.
    Hansen, F.K., Cabella, P., Marinucci, D., Vittorio, N., Asymmetries in the local curvature of the WMAP data, Astrophysical Journal Letters (2004), p. L67–L70.Google Scholar
  21. 21.
    G. Kerkyacharian, P. Petrushev, D. Picard, and Yuan Xu, Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions, J. Funct. Anal. 256 (2009), 1137–1188.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    G. Kyriazis, P. Petrushev, and Yuan Xu, Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball, Proc. London Math. Soc. 97 (2008), 477–513.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    X. Lan, D. Marinucci, On The Dependence Structure of Wavelet Coefficients for Spherical Random Fields, Stochastic Processes and their Applications, 119 (2009), 3749–3766.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    D. Marinucci, D. Pietrobon, A. Balbi, P. Baldi, P. Cabella, G. Kerkyacharian, P. Natoli, D. Picard, N. Vittorio, Spherical Needlets for CMB Data Analysis, Monthly Notices of the Royal Astronomical Society 383 (2008), 539–545, arXiv: 0707.0844.Google Scholar
  25. 25.
    A. Mayeli, Discrete and continuous wavelet transformation on the Heisenberg group, Ph.D thesis, Technische Universität München, 2006.Google Scholar
  26. 26.
    A. Mayeli, Asymptotic Uncorrelation for Mexican Needlets, Journal of Mathematical Analysis and Applications, 363, 2010, 336–344.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    J.D. McEwen, P. Vielva, Y. Wiaux, R.B. Barreiro, L. Cayon, M.P. Hobson, A.N. Lasenby, E. Martinez-Gonzalez, J. Sanz, Cosmological applications of a wavelet analysis on the sphere, Journal of Fourier Analysis and its Applications 13 (2007), 495–510.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    F.J. Narcowich, P. Petrushev and J. Ward, Localized tight frames on spheres, SIAM J. Math. Anal. 38 (2006), 574–594.MathSciNetCrossRefGoogle Scholar
  29. 29.
    F.J. Narcowich, P. Petrushev and J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, J. Func. Anal. 238 (2006), 530–564.MathSciNetMATHGoogle Scholar
  30. 30.
    E. T. Newman and R. Penrose, Notes on the Bondi-Metzner-Sachs Group, J. Math. Phys 7 (1966) 863–870.MathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Patanchon, J. Delabrouille, J.-F. Cardoso, P. Vielva, CMB and foreground in WMAP first-year data, Monthly Notices of the Royal Astronomical Society 364 (2005), 1185–1194.CrossRefGoogle Scholar
  32. 32.
    P. Petrushev and Yuan Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. and Appl. 14 (2008), 372–414.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    S. Scodeller, O. Rudjord, F.K. Hansen, D. Marinucci, D. Geller, A. Mayeli, Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets, arxiv:1004.5576.Google Scholar
  34. 34.
    G.F. Smoot, G. F., C.L. Bennett, C. L., A. Kogut, E.L Wright, J. Aymon, N. W. Boggess, E. S. Cheng, G. de Amici, S. Gulkis, M. G. Hauser, G. Hinshaw, P.D. Jackson, M. Janssen, E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Loewenstein, P. Lubin, J. Mather, S.S. Meyer, S.H. Moseley, T. Murdock, L. Rokke, R.F. Silverberg, L. Tenorio, R. Weiss, D.T. Wilkinson, Structure in the COBE differential microwave radiometer first-year maps, Astrophysical Journal, Part 2 - Letters, 396, no. 1, (1992) pp. L1–L5.Google Scholar
  35. 35.
    R. Strichartz, A functional calculus for elliptic pseudodifferential operators, Amer. J. Math 94 (1972), 711–722.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    M. Taylor, Pseudodifferential Operators, Princeton University Press, (1981).Google Scholar
  37. 37.
    P. Vielva, E. Martínez-González, J.E. Gallegos, L. Toffolatti, J.L. Sanz, Point source detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps, Monthly Notice of the Royal Astronomical Society, 344, Issue 1 (2003) 89–104.Google Scholar
  38. 38.
    Y. Wiaux, J.D. McEwen, P. Vielva, Complex data processing: fast wavelet analysis on the sphere, Journal of Fourier Analysis and its Applications, 13 (2007), 477–494.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daryl Geller
    • 1
  • Azita Mayeli
  1. 1.Mathematics DepartmentStony Brook UniversityStony BrookUSA

Personalised recommendations