Skip to main content

Chromatic Number of the Plane & Its Relatives, History, Problems and Results: An Essay in 11 Parts

  • Chapter
  • First Online:
Book cover Ramsey Theory

Part of the book series: Progress in Mathematics ((PM,volume 285))

Abstract

In August 1987 I attended an inspiring talk by Paul Halmos at Chapman College in Orange, California. It was entitled “Some Problems You Can Solve, and Some You Cannot.” This problem was an example of a problem “you cannot solve.”

Much but not all of this text is contained in the author’s monograph [Soi].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [Bru6].

  2. 2.

    This seems to be my first mention of what has become an 18-year long project!

  3. 3.

    First publication could be attributed to De Morgan, who mentioned the problem in his 1860 book review in Athenaeum [DeM4], albeit anonymously.

  4. 4.

    Thanks to Prof. Fred Hoffman, the tireless organizer of this annual conference, I have a videotape of Paul Erdős’s memorable talk.

  5. 5.

    My translation from the Russian.

  6. 6.

    Ibid.

  7. 7.

    The Young Men’s Christian Association (YMCA) is one of the oldest and largest not-for-profit community service organizations in the world.

  8. 8.

    Robert Maynard Hutchins (1899–1977) was President (1929–1945) and Chancellor (1945–1951) of the University of Chicago.

  9. 9.

    Graham cites Paul O’Donnell’s Theorem 48.4 (see it later in this book) as “perhaps, the evidence that χ is at least 5.”

  10. 10.

    If the chromatic number of the plane is 7, then for G(x 1,,xn)=7 such an n must be greater than 6197 [Pri].

  11. 11.

    The authors of the fine problem book [BMP] incorrectly credit Hadwiger as “first” to study this problem (p. 235). Hadwiger, quite typically for him, limited his study to partitions into closed sets.

  12. 12.

    Students in such high schools hold regular jobs during the day, and attend classes at night.

  13. 13.

    The axiom of choice is assumed in this result.

  14. 14.

    Or so we all thought until recently. Because of that, I chose to leave this section as it was written in the early 1990s. BUT: see Section X of this survey for the latest developments.

  15. 15.

    The symbol G(x 1,,x n ) denotes the graph on the listed inside parentheses n vertices, with two vertices adjacent if and only if they are unit distance apart.

  16. 16.

    Symbol [a,b], a < b, as usual, stands for the line segment, including its endpoints a and b.

  17. 17.

    The important problem book [BMP] mistakenly cites only one of this series of three papers. It also incorrectly states that the authors proved only the lower bound 5, whereas they raised the lower bound to 6.

  18. 18.

    Curiously, Paul wrote an improbable date on the letter: “1977 VII 25”.

  19. 19.

    The De Bruijn–Erdős theorem assumes the axiom of choice.

  20. 20.

    Quoted from [Pet], p. 494.

  21. 21.

    It is the first task, but we did not think of it then, and so this definition appears for the first time in [Soi].

  22. 22.

    Quoted from [Pet], p. 494.

  23. 23.

    A cardinal κ is called inaccessible if κ> 0, κ is regular, and κ is strong limit. An infinite cardinal α is regular, if cfωαα. A cardinal κ is a strong limit cardinal if for every cardinal λ, λ<κ implies2λ<κ.

  24. 24.

    Assuming the existence of an inaccessible cardinal.

  25. 25.

    Due to the use of the Solovay’s theorem, we assume the existence of an inaccessible cardinal.

References

  1. Bruijn, N. G. de, and Erdős, P., A colour problem for infinite graphs and a problem in the theory of relations, Indagationes Math. 13 (1951), 369–373.

    Google Scholar 

  2. Benda, M., and Perles, M., Colorings of metric spaces, Geombinatorics IX(3), (2000), 113–126.

    Google Scholar 

  3. Brass, P., Moser, W., and Pach, J., Research Problems in Discrete Geometry, Springer, New York, 2006.

    Google Scholar 

  4. Brown, N., Dunfield, N., and Perry, G., Colorings of the plane I, Geombinatorics III(2), (1993), 24–31.

    Google Scholar 

  5. Brown, N., Dunfield, N., and Perry, G., Colorings of the plane II, Geombinatorics III(3), (1993), 64–74.

    Google Scholar 

  6. Brown, N., Dunfield, N., and Perry, G., Colorings of the plane III, Geombinatorics III(4), (1993), 110–114.

    Google Scholar 

  7. Cantwell, K., All regular polytopes are Ramsey, J. Combin. Theory Ser A 114 (2007) 555–562.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chilakamarri, K. B., Unit-distance graphs in rational n-spaces, Discrete Math. 69 (1988), 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chilakamarri, K. B., On the chromatic number of rational five-space, Aequationes Math. 39 (1990), 146–148.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chilakamarri, K. B., The unit-distance graph problem: A brief survey and some new results, Bull. ICA 8 (1993), 39–60.

    MathSciNet  MATH  Google Scholar 

  11. Chow, T., Distances forbidden by two-colorings of Q 3 and A n (manuscript).

    Google Scholar 

  12. Cibulka, J., On the chromatic number of real and rational spaces, Geombinatorics XVIII(2), (2008), 53–65.

    Google Scholar 

  13. Conway, J. H., and Sloane, N. J. A. Sphere Packings, Lattices and Groups, 3rd ed., with contrib. by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen, and B. B. Venkov, Springer, New York, 1999.

    Google Scholar 

  14. Coulson, D., A 15-colouring of 3-space omitting distance one, Discrete Math. 256 (1–2), (2002), 83–90.

    Google Scholar 

  15. Coulson, D., Tilings and colourings of 3-space, Geombinatorics XII (3), (2003), 102–116.

    Google Scholar 

  16. Croft, H. T., Incidence incidents, Eureka (Cambridge) 30 (1967), 22–26.

    Google Scholar 

  17. Croft, H. T., Falconer, K. J., and Guy, R. K., Unsolved Problems in Geometry, Springer, New York, 1991.

    Book  MATH  Google Scholar 

  18. De Morgan, A., Review of the philosophy of discovery…, The Athenaeum 1694, London, 1860, 501–503.

    Google Scholar 

  19. Erdős, P., Graph theory and probability II, Can. J. Math. 13 (1961), 346–352.

    Article  Google Scholar 

  20. Erdős, P., Some unsolved problems, Magyar tudomanyos academia mathematikai kutato intezetenek közlemenyel 6 ser. A(1–2), (1961), 221–254.

    Google Scholar 

  21. Erdős, P., Nekotorye Nereshennye Problemy (Some unsolved problems), Matematika 7(4), (1963), 109–143. (A Russian translation of [E61.22].)

    Google Scholar 

  22. Erdős, P., On some problems of elementary and combinatorial geometry, Annali Matematica Pura Applicata 103(4), (1975), 99–108.

    Google Scholar 

  23. Erdős, P., Problem (p. 681); P. Erdős, Chairman, Unsolved problems, in Proceedings of the Fifth British Combinatorial Conference 1975, University of Aberdeen, July 14–18, 1975, C. St. J. A. Nash-Williams and J. Sheehan, eds., Congressus Numerantium XV, Winnipeg, Utilitas Mathematica, 1976.

    Google Scholar 

  24. Erdős, P., Problem 28 in “Exercises, problems and conjectures,” in Bollobás, B., Extremal Graph Theory, London Mathematical Society Monographs, Academic Press, 1978, p. 285.

    Google Scholar 

  25. Erdős, P., Combinatorial problems in geometry and number theory, Relations between combinatorics and other parts of mathematics, Proc. of the Sympos. Pure Math., Ohio State Univ., Columbus, OH, (1978); Proc. of the Sympos. Pure Math., XXXIV, Amer. Math. Soc., Providence, RI, (1979), 149–162.

    Google Scholar 

  26. Erdős, P., Some combinatorial problems in geometry, Geom. & Diff. Geom. Proc., Haifa, Israel, (1979); Lecture Notes in Math., 792, Springer (1980), 46–53.

    Google Scholar 

  27. Erdős, P., Some combinational problems in geometry, Geometry and Differential Geometry (Proc. Conf., Univ. Haifa, Haifa, 1979), Lecture Notes in Math., 792, pp. 46–53, Springer, Berlin, 1980.

    Google Scholar 

  28. Erdős, P., Some applications of graph theory and combinatorial methods to number theory and geometry, Algebraic Methods in Graph Theory (Colloq. held in Szeged, Hungary 1978), Vol. I, Coll. Math Soc. J. Bolyai 25 (1981), 137–148.

    Google Scholar 

  29. Erdős, P., Some new problems and results in graph theory and other branches of combinatorial mathematics, Combinatorics and Graph Theory, Proc. Symp. Calcutta 1980, Lecture Notes Math., 885, Springer, 1981, 9–17.

    Google Scholar 

  30. Erdős, P., Problems and results in combinatorial geometry, Discrete Geometry and Convexity, Annals of the New York Academy of Sciences, 440, The New York Academy of Sciences, New York, 1985, 1–11.

    Google Scholar 

  31. Erdős, P., Letter to A. Soifer of July 16, 1991.

    Google Scholar 

  32. Erdős, P., Letter to A. Soifer of August 10, 1991.

    Google Scholar 

  33. Erdős, P., Letter to A. Soifer, received on October 2, 1991 (marked “1977 VII 25”).

    Google Scholar 

  34. Erdős, P., On some unsolved problems in elementary geometry (Hungarian), Mat. Lapok (N.S.) 2(2), (1992), 1–10.

    Google Scholar 

  35. Erdős, P., Video recording of the talk “Some of my favorite problems II”, University of Colorado at Colorado Springs, January 10, 1992.

    Google Scholar 

  36. Erdős, P., Video recording of the talk “Twenty five years of questions and answers,” 25th South-Eastern International Conference On Combinatorics, Graph Theory and Computing, Florida Atlantic University, Boca Raton, March 10, 1994.

    Google Scholar 

  37. Erdős, P., Harary, F., and Tutte, W. T., On the dimension of a graph, Mathematica 12(1965), 118–125.

    Google Scholar 

  38. Erdős, P., and Simonovits, M., On the chromatic number of geometric graphs, Ars Comb. 9 (1980), 229–246.

    Google Scholar 

  39. Falconer, K. J., The realization of distances in measurable subsets covering R n, J.Combin. Theory (A) 31 (1981), 187–189.

    Google Scholar 

  40. Fischer, K. G., Additive k-colorable extensions of the rational plane, Discrete Math. 82 (1990), 181–195.

    Article  MathSciNet  MATH  Google Scholar 

  41. Fischer, K. G., The connected components of the graph \(Q(Q{(\sqrt{{N}_{1}},\ldots,\sqrt{{N}_{d}})}^{2}\), Congressus Numerantium 72 (1990), 213–221.

    MathSciNet  Google Scholar 

  42. Frankl, P., and Wilson, R. M., Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–368.

    Article  MathSciNet  MATH  Google Scholar 

  43. Garsia, A., E-mail to A. Soifer, February 28, 1995.

    Google Scholar 

  44. Graham, R. L., Talk at the Mathematical Sciences Research Institute, Berkeley, August 2003.

    Google Scholar 

  45. Graham, R. L., Some of my favorite problems in Ramsey theory, Proceedings of the ‘Integers Conference 2005’ in Celebration of the 70th Birthday of Ronald Graham, Carrolton, Georgia, USA, October 27–30, 2005, B. Landman et al., ed., Walter de Gruyter, Berlin, 2007, 229–236.

    Google Scholar 

  46. Graham, R. L., Old and new problems and results in Ramsey theory, Horizon of Combinatorics (Conference and EMS Summer School), Budapest and Lake Balaton, Hungary, 10–22 July 2006, to appear.

    Google Scholar 

  47. Graham, R. L., and Tressler, E., Open problems in Euclidean Ramsey theory, in this volume.

    Google Scholar 

  48. Goodman, J. E., and O’Rourke, J., Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 1997.

    MATH  Google Scholar 

  49. Hadwiger, H., Uberdeckung des euklidischen Raum durch kongruente Mengen, Portugaliae Math. 4 (1945), 238–242.

    MathSciNet  MATH  Google Scholar 

  50. Hadwiger, H., Ungelöste Probleme, Nr. 11, Elemente der Mathematik 16 (1961), 103–104.

    Google Scholar 

  51. Hadwiger, H., and Debrunner, H., Ausgewählte einzelprobleme der kombinatorishen geometrie in der ebene, L’Enseignement Mathematique 1 (1955), 56–89.

    MathSciNet  MATH  Google Scholar 

  52. Hadwiger, H., and Debrunner, H., Kombinatorischen Geometrie in der Ebene, L’Enseignement Mathematique, Geneva, 1959.

    Google Scholar 

  53. Hadwiger, H., and Debrunner, H., Combinatorial Geometry of the Plane ed. I. M. Yaglom, Nauka, Moscow, 1965 (extended by the editor Russian Translation version of [HD2]).

    Google Scholar 

  54. Hadwiger, H., Debrunner, H., and Klee, V., Combinatorial Geometry in the Plane, Holt, Rinehart and Winston, NY, 1964.

    Google Scholar 

  55. Hochberg, R., and O’Donnell, P., Some 4-chromatic unit-distance graphs without small cycles, Geombinatorics V(4), (1996), 137–14.

    Google Scholar 

  56. Hoffman, I., and Soifer, A., Almost chromatic number of the plane, Geombinatorics III(2), (1993), 38–40.

    Google Scholar 

  57. Hoffman, I., and Soifer, A., Another six-coloring of the plane, Discrete Math. 150 (1996), 427–429.

    Article  MathSciNet  MATH  Google Scholar 

  58. Isbell, J., Letter to A. Soifer of August 26, 1991.

    Google Scholar 

  59. Isbell, J., Letter to A. Soifer of September 3, 1991.

    Google Scholar 

  60. Johnson Jr., P. D., Coloring Abelian groups, Discrete Math. 40 (1982), 219–223.

    Article  MathSciNet  MATH  Google Scholar 

  61. Johnson Jr., P. D., Simple product colorings, Discrete Math. 48 (1984), 83–85.

    Article  MathSciNet  MATH  Google Scholar 

  62. Johnson Jr., P. D., Two-coloring of real quadratic extensions of Q 2 that forbid many distances, Congressus Numerantium 60 (1987), 51–58.

    MathSciNet  Google Scholar 

  63. Johnson Jr., P. D., Two-colorings of a dense subgroup of Q n that forbid many distances, Discrete Math. 79 (1989/1990), 191–195.

    Google Scholar 

  64. Johnson Jr., P. D., Product colorings, Geombinatorics I(3), (1991), 11–12.

    Google Scholar 

  65. Johnson Jr., P. D., Maximal sets of translations forbidable by two-colorings of Abelian groups, Congressus Numerantium 91 (1992), 153–158.

    MathSciNet  Google Scholar 

  66. Johnson Jr., P. D., About two definitions of the fractional chromatic number, Geombinatorics V(3), (1996), 11–12.

    Google Scholar 

  67. Johnson Jr., P. D., Introduction to “colorings of metric spaces” by Benda and Perles, Geombinatorics IX(3), (2000), 110–112.

    Google Scholar 

  68. Johnson Jr., P. D., Coloring the rational points to forbid the distance one – A tentative history and compendium, Geombinatorics XVI(1), (2006), 209–218.

    Google Scholar 

  69. Johnson Jr., P. D., Euclidean distance graphs on the rational points, appears in this volume.

    Google Scholar 

  70. Jungreis, D. S., Reid, M., and Witte, D., Distances forbidden by some 2-coloring of Q 2, Discrete Math. 82 (1990), 53–56.

    Article  MathSciNet  MATH  Google Scholar 

  71. Klee, V., and Wagon, S., Old and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical Association of America, second edition (with addendum), 1991.

    Google Scholar 

  72. Larman, D. G., and Rogers, C. A., The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  73. Lovász, L., and Vesztergombi, K., Geometric representations of graphs, in Paul Erdös and his Mathematics II, Halás, G. et al. (ed.), Springer, 2002, 471–498.

    Google Scholar 

  74. Mann, M., A new bound for the chromatic number of the rational five-space, Geombinatorics XI(2), (2001), 49–53.

    Google Scholar 

  75. Mann, M., Hunting unit-distance graphs in rational n-spaces, Geombinatorics XIII(2), (2003), 86–97.

    Google Scholar 

  76. Moser, L., and Moser, W., Solution to Problem 10, Can. Math. Bull. 4 (1961), 187–189.

    Google Scholar 

  77. Nechushtan, O., On the space chromatic number, Discrete Math. 256 (2002), 499–507.

    Article  MathSciNet  MATH  Google Scholar 

  78. Nelson, E., Letter to A. Soifer of August 23, 1991.

    Google Scholar 

  79. Nelson, E., Letter to A. Soifer of October 5, 1991.

    Google Scholar 

  80. O’Donnell, P., High girth unit-distance graphs, Ph. D. Dissertation, Rutgers University, May 25, 1999.

    Google Scholar 

  81. O’Donnell, P., Arbitrary girth, 4-chromatic unit-distance graphs in the plane part I: Graph description, Geombinatorics IX(3), (2000), 145–150.

    Google Scholar 

  82. O’Donnell, P., Arbitrary girth, 4-chromatic unit-distance graphs in the plane part II: Graph embedding, Geombinatorics IX(4), (2000), 180–193.

    Google Scholar 

  83. Payne, M. S., A unit distance graph with ambiguous chromatic number, arXiv: 0707.1177v1 [math.CO] 9 Jul 2007.

    Google Scholar 

  84. Payne, M. S., Unit distance graphs with ambiguous chromatic number, Electronic J.Combin. 16(1), 2009 (Nov 7, 2009).

    Google Scholar 

  85. Peter, L. J., Peter’s Quotations: Ideas for Our Time, William Morrow, New York, 1977.

    Google Scholar 

  86. Materialy Konferenzii “Poisk-97”, Moscow, 1997, (Russian).

    Google Scholar 

  87. Pritikin, D., All unit-distance graphs of order 6197 are 6-colorable, J. Combin. Theory Ser. B 73(2), (1998), 159–163.

    Google Scholar 

  88. Radoicic, R., and Tóth, G., Note on the chromatic number of the space, Discrete and Computational Geometry: the Goodman-Pollack Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir (eds.), Springer, Berlin 2003, 695–698.

    Google Scholar 

  89. Raigorodskii, A. M., On the chromatic number of a space, Russ. Math. Surv. 55(2), (2000), 351–352.

    Google Scholar 

  90. Raigorodskii, A. M., Borsuk’s problem and the chromatic numbers of some metric spaces, Russian Math. Surv. 56(1), (2001), 103–139.

    Google Scholar 

  91. Raigorodskii, A. M., Chromatic Numbers (Russian), Moscow Center of Continuous Mathematical Education, Moscow, 2003.

    Google Scholar 

  92. Raiskii, D. E., Realizing of all distances in a decomposition of the space R n into n+1 Parts, Mat. Zametki 7 (1970), 319–323 [Russian]; Engl. transl., Math. Notes 7 (1970), 194–196.

    Google Scholar 

  93. Shelah, S., and Soifer, A., Axiom of choice and chromatic number of the Plane, J.Combin. Theory Ser. A 103(2003) 387–391.

    Article  MathSciNet  MATH  Google Scholar 

  94. Soifer, A., and Shelah, S., Axiom of choice and chromatic number: An example on the plane, J. Combin. Theory Ser. A 105(2), (2004), 359–364.

    Google Scholar 

  95. Simmons, G. J., The chromatic number of the sphere, J. Austral. Math. Soc. Ser. A 21 (1976), 473–480.

    Article  MathSciNet  MATH  Google Scholar 

  96. Soifer, A., The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators, Springer, New York, 2009.

    MATH  Google Scholar 

  97. Soifer, A., Triangles in a three-colored plane, Geombinatorics I(2) (1991), 11–12 and I(4) (1992), 21.

    Google Scholar 

  98. Soifer, A., Chromatic number of the plane: A historical essay, Geombinatorics I(3), (1991), 13–15.

    Google Scholar 

  99. Soifer, A., Relatives of chromatic number of the plane I, Geombinatorics I(4), (1992), 13–15.

    Google Scholar 

  100. Soifer, A., A six-coloring of the plane, J. Combin. Theory Ser A 61(2), (1992), 292–294.

    Google Scholar 

  101. Soifer, A., Six-realizable set X 6, Geombinatorics III(4), (1994).

    Google Scholar 

  102. Soifer, A., An infinite class of 6-colorings of the plane, Congressus Numerantium 101 (1994), 83–86.

    MathSciNet  MATH  Google Scholar 

  103. Soifer, A., 50th Anniversary of one problem: Chromatic number of the plane, Mathematics Competitions 16(1), (2003), 9–41.

    Google Scholar 

  104. Soifer, A., Axiom of choice and chromatic number of R n, J. Combin. Theory Ser A 110(1), (2005), 169–173.

    Google Scholar 

  105. Solovay, R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 Ser. 2 (1970), 1–56.

    Google Scholar 

  106. Székely, L. A., Remarks on the chromatic number of geometric graphs, in Graphs and Other Combinatorial Topics, Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M. Fiedler, ed., Teubner Verlaggesellschaft, Leipzig, 1983, 312–315.

    Google Scholar 

  107. Székely, L. A., Measurable chromatic number of geometric graphs and sets without some distances in Euclidean space, Combinatorica 4 (1984) 213–218.

    Article  MathSciNet  MATH  Google Scholar 

  108. Szekeres, Gy., A combinatorial problem in geometry: Reminiscences, in Paul Erdös, The Art of Counting, MIT Press, Cambridge, MA, 1973, xix–xxii.

    Google Scholar 

  109. Woodall, D. R., Distances realized by sets covering the plane, J. Combin. Theory Ser. A 14 (1973), 187–200.

    Article  MathSciNet  MATH  Google Scholar 

  110. Wormald, N.C., A 4-chromatic graph with a special plane drawing, J. Austral. Math. Soc. Ser. A 28(1979), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  111. Zaks, J., On the chromatic number of some rational spaces, Combin. Optim., Research Report Corr 88–26 (1988), 1–3.

    Google Scholar 

  112. Zaks, J., On four-colourings of the rational four-space, Aequationes Math. 27 (1989) 259–266.

    Article  MathSciNet  Google Scholar 

  113. Zaks, J., On the chromatic number of some rational spaces, Ars Combinatorica 33 (1992), 253–256.

    MathSciNet  MATH  Google Scholar 

  114. Zaks, J., Uniform distances in rational unit-distance graphs, Discrete Math. 109 (1–3), (1992) 307–311.

    Google Scholar 

  115. Zaks, J., On odd integral distances rational graphs, Geombinatorics IX(2), (1999), 90–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Soifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Soifer, A. (2011). Chromatic Number of the Plane & Its Relatives, History, Problems and Results: An Essay in 11 Parts . In: Soifer, A. (eds) Ramsey Theory. Progress in Mathematics, vol 285. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8092-3_8

Download citation

Publish with us

Policies and ethics