Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem from 1973, with Numerous Applications

Part of the Progress in Mathematics book series (PM, volume 285)


If you treasure semantic precision, you might name the volcano that erupted (figuratively speaking!) in 1973: Coloring Problems in Geometrically Defined Hypergraphs.


Chromatic Number Arithmetic Progression Blue Point Tauberian Theorem Regular Hexagon 



Research supported partly by National Science Foundation grant no. 0353723.


  1. [1]
    G. Czimadia and G. Tóth, Note on a Ramsey-type problem in geometry,J. Combin. Theory, Ser. A, 65 (2) (1994), 302–306.Google Scholar
  2. [2]
    P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems I,J. Combin. Theory, Ser. A, 14 (1973), 341–363.Google Scholar
  3. [3]
    P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems II,Cioll. Math. Soc. Janos Bolyai 10 (1973), North-Holland, Amsterdam (1975), 529–557.Google Scholar
  4. [4]
    P. Erdös and R. Rado, Combinatorial theorems on classification of subsets of a given set,Proc. London Math. Soc. 2 (1952), 417–439.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Gardner, A new collection of “brain teasers”,Sci. Amer. 206 (1960), 172–180.Google Scholar
  6. [6]
    W. T. Gowers, A new proof of Szemeredi’s theorem, GAFA,Geom. Funct. Anal. 11 (2001), 465–588.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    D. S. Gunderson and K. R. Johannson, On combinatorial upper bounds for van der Waerden numbersW(3;r),Congr. Num. 190 (2008), 33–46.MathSciNetMATHGoogle Scholar
  8. [8]
    D. S. Gunderson and V. Rödl, Extremal problems for affine cubes of integers,Combin. Probab. Comput. 7 (1998), 65–79.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    H. Hadwiger, Uberdeckung des euklidischen Raum durch Kongruente Menger,Portugaliae Math. 4 (1945), 238–242.MathSciNetMATHGoogle Scholar
  10. [10]
    H. Hadwiger, Ungelöste Probleme, Nr. 11,Elemente der Mathematik 16 (1961), 103–104.Google Scholar
  11. [11]
    D. G. Hoffman, P. D. Johnson Jr., and A. D. Szlam, A new lemma in Ramsey theory,J. Comb. Math. Comb. Comput. 38 (2001), 123–128.MathSciNetMATHGoogle Scholar
  12. [12]
    P. D. Johnson Jr. and A. D. Szlam, A new connection between two kinds of Euclidean coloring problems,Geombinatorics 10 (2001), 172–178.MathSciNetMATHGoogle Scholar
  13. [13]
    R. Juhász, Ramsey type theorems in the plane,J. Combin. Theory, Ser. A, 27 (1979), 152–160.Google Scholar
  14. [14]
    L. Moser, Notes on number theory II: on a theorem of van der Waerden,Can. Math. Bull. 3 (1960), 23–25.MATHCrossRefGoogle Scholar
  15. [15]
    L. Moser and W. Moser, Solution to Problem 10,Can. Math. Bull. 4 (1961), 187–189.Google Scholar
  16. [16]
    A. Soifer,The Mathematical Coloring Book, Springer, Berlin, 2009.MATHGoogle Scholar
  17. [17]
    A. D. Szlam, Monochromatic translates of configurations in the plane,J. Combin. Theory, Ser. A, 93 (2001), 173–176.Google Scholar
  18. [18]
    B. L. van der Waerden, Beweis einer Baudetschen Vermutung,Nieuw Arch. Wisk. 15 (1927), 212–216.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Harvey Mudd CollegeClaremontUSA
  2. 2.Department of Mathematics and StatisticsAuburn UniversityAuburnUSA

Personalised recommendations