Ramsey Theory Before Ramsey, Prehistory and Early History: An Essay in 13 Parts

  • Alexander Soifer
Part of the Progress in Mathematics book series (PM, volume 285)


How does a new theory emerge? It usually manifests itself in the older and established areas of mathematics. Gradually a critical mass of results appears, prompting a realization that what we have is a new identifiable field of mathematical thought, with its own set of problems and methods. As a fetus in a womb, the new theory eventually does not fit in the existing classification of mathematical thought. That is when the child is born. Ramsey theory has not been an exception.


lineR Fermat Cute Amaze 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arn.
    Arnautov, V.I., Nediskretnaya Topologizuemost Schetnykh Kolets, (Russian), Dokl. Akad. Nauk SSSR 191 (1970), 747–750. English Translation: Nondiscrete topologizability of countable rings, Soviet Math. Dokl. 11 (1970), 423–426.Google Scholar
  2. Bra1.
    Brauer, A., Über Sequenzen von Potenzresten, Sitzunberichte de Preussischen Akademie der Wissenschaften, Physicalisch-Mathematische Klasse, Berlin, 1928, 9–16.Google Scholar
  3. Bra2.
    Brauer, A., Combinatorial methods in the distribution ofkth power residues, Combinatorial Mathematics and Its Applications; Proceedings of the Conference, University of North Carolina, 14–37, 1969.Google Scholar
  4. Bra3.
    Brauer, A., Gedenkrede aufIssai Schur, in Issai Schur. Gesammelte Abhandlungen, vol. 1, Springer, Berlin, 1973, v–xiv.Google Scholar
  5. Bru1.
    Bruijn, N.G. de, Letter to P. Erdős, August 18, 1947.Google Scholar
  6. BE.
    Bruijn, N.G. de and Erdős, P., A colour problem for infinite graphs and a problem in the theory of relations, Indagationes Math. 13 (1951), 369–373.Google Scholar
  7. BM.
    Burkill, H. and Mirsky, L., Monotonicity, J. Math. Anal. Appl. 41 (1973), 391–410.MathSciNetMATHCrossRefGoogle Scholar
  8. CG.
    Chung, F. and Graham, R.L., Forced convex n-gons in the plane, Discrete Comput. Geom. 19 (1998), 3677–371.MathSciNetCrossRefGoogle Scholar
  9. Dic.
    Dickson, L.E., On the Last Theorem of Fermat, Quart. J. Pure Appl. Math. 40 (1908), 27–45.MATHGoogle Scholar
  10. E47/8/4.
    Erdős, P., Letter to N. G. de Bruijn, August 4, 1947.Google Scholar
  11. E57.13
    Erdős, P., Some unsolved problems, Michigan Math. J. 4 (1957), 291–300.MathSciNetCrossRefGoogle Scholar
  12. E61.22
    Erdős, P., Some unsolved problems, Magyar tudomanyos akademia mathematikai kutato intezetenek közlemenyel 6 ser. A(1–2) (1961), 221–254.Google Scholar
  13. E63.21
    Erdős, P., Nekotorye Nereshennye Problemy (Some unsolved problems), Matematika 7(4) (1963), 109–143. (A Russian translation of [E61.22].)Google Scholar
  14. E71.13
    Erdős, P., On the application of combinatorial analysis to number theory, geometry and analysis, Actes du Congrès International des Mathematiciens (Nice, 1970), Tome 3, pp. 201–210, Gauthier-Villars, Paris, 1971.Google Scholar
  15. E73.21
    Erdős, P., Problems and results on combinatorial number theory, A survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colorado, 1971), 117–138, North-Holland, Amsterdam, 1973.Google Scholar
  16. E76.35
    Erdős, P., Problems and results in combinatorial analysis, Colloquio Internacionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 3–17, Accad. Naz. Lincei, Rome, 1976.Google Scholar
  17. E81.16
    Erdős, P., On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25–42.MathSciNetCrossRefGoogle Scholar
  18. E85.33
    Erdős, P., Some problems and results in number theory, Number Theory and Combinatorics, Japan 1984 (Tokyo, Okayama and Kyoto, 1984), pp. 65–87, World Scientific, Singapore, 1985.Google Scholar
  19. E92.14
    Erdős, P., Obituary of my friend and coauthor Tibor Gallai, Geombinatorics II(1) (1992), 5–6; corrections: II(2), 1992, 37.Google Scholar
  20. EG.
    Erdős, P. and Graham, R., Old and New Problems and Results in Combinatorial Number Theory, L’Enseignement Mathématique, Université de Genève, 1980.Google Scholar
  21. ES.
    Erdős, P. and Szekeres, G., A combinatorial problem in geometry, Compositio Math., 2 (1935), 463–470.MathSciNetGoogle Scholar
  22. ET.
    Erdős, P. and Turán, P., On Some Sequences of Integers, J. Lond. Math. Soc. 11 (1936), 261–264.CrossRefGoogle Scholar
  23. Gar.
    Garsia, A., Manuscript, Fall 1958, 10 pp.Google Scholar
  24. Gra2.
    Graham, R.L., Recent developments in Ramsey theory. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 1555–1567, PWN, Warsaw, 1984.Google Scholar
  25. GN.
    Graham, R.L. and Nesetril, J., Ramsey theory and Paul Erdős, in Paul Erdős and his Mathematics II, ed. by G. Halász, et al., Springer, Budapest, 2002, 339–365.Google Scholar
  26. GR.
    Graham, R.L. and Rothschild, B.L., Ramsey’s theorem for n-parameter sets, Trans. Am. Math. Soc. 159 (1971), 257–292.MathSciNetMATHGoogle Scholar
  27. GRS1.
    Graham, R.L., Rothschild, B.L., and Spencer, J.H., Ramsey Theory, 1st Edition, John Wiley & Sons, New York, 1980.MATHGoogle Scholar
  28. GRS2.
    Graham, R.L., Rothschild, B.L., and Spencer, J.H., Ramsey Theory, 2nd Edition, John Wiley & Sons, New York, 1990.MATHGoogle Scholar
  29. GG.
    [GG] Greenwood, R.E. and Gleason, A.M., Combinatorial relations and chromatic graphs, Can. J. Math. 7 (1955), 1–7.Google Scholar
  30. Hil.
    Hilbert, D., Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 110 (1892), 104–129.Google Scholar
  31. Hin.
    Hindman, N., Finite Sums from Sequences within Cells of a Partition of N, J. Combin. Theory Ser. A 17 (1974), 1–11.MathSciNetMATHCrossRefGoogle Scholar
  32. Khi1.
    Khinchin, A.Y., Tri Zhemchuzhiny Teorii Chisel, Gos. Izd-vo tekhn.-teoret, lit-ry, Moskva, 1947 (Russian).Google Scholar
  33. Khi2.
    Khinchin, A.Y., Tri Zhemchuzhiny Teorii Chisel, Gos. Izd-vo tekhn.-teoret, lit-ry, 2nd ed., Moskva, 1948 (Russian).Google Scholar
  34. Khi3.
    Chintschin, A.J., Drei Pearlen der Zahlentheorie, Akademie Verlag, Berlin, 1951.Google Scholar
  35. Khi4.
    Khinchin, A.Y., Three Pearls of Number Theory, Graylock, Rochester, New York, 1952.MATHGoogle Scholar
  36. Mir.
    Mirsky, L., The combinatorics of arbitrary partitions, Bull. Inst. Math. 11 (1975), 6–9.MathSciNetGoogle Scholar
  37. Rad1.
    Rado, R., Studien zur Kombinatorik, Math. Zeitschrift 36 (1933), 424–480.MathSciNetMATHCrossRefGoogle Scholar
  38. Rad2.
    Rado, R., Note on Combinatorial Analysis, Proc. Lond. Math. Soc. 48(2) (1943), 122–160.MathSciNetMATHGoogle Scholar
  39. Ram.
    Ramsey, F.P., On a problem of formal logic, Proc. Lond. Math. Soc. Ser 2 30(4) (1930), 338–384.Google Scholar
  40. Rot.
    Roth, K.F., On certain sets of integers, J. Lond. Math. Soc. 28 (1953), 104–109.MATHCrossRefGoogle Scholar
  41. San.
    Sanders, J.H., A Generalization of Schur’s Theorem, Ph.D. Dissertation, Yale University, 1968.Google Scholar
  42. Sch.
    Schur, I., Über die Kongruenzx m+y mz m(mod.p), Jahresbericht der Deutschen Mathematiker-Vereinigung 25 (1916), 114–117.Google Scholar
  43. Sei.
    Seidenberg, A., A simple proof of Erdős and Szekeres, J. London Math. Soc. 34 (1959), 352.Google Scholar
  44. SS1.
    Shelah, S. and Soifer, A., Axiom of choice and chromatic number of the plane, J.Combin. Theory Ser. A 103 (2003), 387–391.MathSciNetMATHCrossRefGoogle Scholar
  45. SS2.
    Soifer, A. and Shelah, S., Axiom of choice and chromatic number: An example on the plane, J. Combin. Theory Ser. A 2(105) (2004), 359–364.MathSciNetCrossRefGoogle Scholar
  46. Sko.
    Skolem, T., Ein Kombinatorische Satz mit Anwendung auf ein Logisches Entscheidungsproblem, Fundamenta Math. 20 (1933), 254–261.MATHGoogle Scholar
  47. Soi.
    Soifer, A., The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of Its Creators, Springer, New York, 2009.MATHGoogle Scholar
  48. Sz1.
    Szemerédi, E., On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.MathSciNetMATHCrossRefGoogle Scholar
  49. Sz2.
    [Sz2] Szemerédi, E., On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica XXVII (1975), 199–245.Google Scholar
  50. TV.
    Tóth, G. and Valtr, P., The Erdős-Szekeres theorem, upper bounds and generalizations, in Discrete and Computational Geometry – Papers from the MSRI Special Program, ed. by J.E. Goodman et al., MSRI Publications 52, Cambridge University Press, Cambridge, 2005, 557–568.Google Scholar
  51. Wae.
    Waerden, B.L. van der, Beweis einer audetschen Vermutung, Nieuw Archief voor Wiskunde 15 (1927), 212–216.Google Scholar
  52. Wae18.
    Waerden, B.L. van der, How the proof of Baudet’s conjecture was found, in Studies in Pure Mathematics, ed. by L. Mirsky, Academic Press, London, 1971, 251–260.Google Scholar
  53. Wit.
    Witt, E., Ein kombinatorischer Satz der Elementargeometrie, Mathematische Nachrichten 6 (1952), 261–262.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of Colorado at Colorado SpringsColoredo SpringsUSA

Personalised recommendations