Skip to main content

[59] (with P. R. Garabedian) A coefficient inequality for schlicht functions

  • Chapter
  • First Online:
Menahem Max Schiffer: Selected Papers Volume 1

Part of the book series: Contemporary Mathematicians ((CM))

  • 737 Accesses

Abstract

Let Σ 0 denote the class of functions \(g(z) = z +\sum _{ n=1}^{\infty }b_{n}{z}^{-n}\) analytic and univalent in |z| > 1. The area theorem says that n=1 n|b n |2 ≤ 1 so that \(\vert b_{n}\vert \leq 1/\sqrt{n}\), but the latter inequality is sharp only for n = 1. In 1938, Schiffer (Bull. Soc. Math. France, 66, 48–55, 1938) proved that |b 2|≤ \(\frac{2}{3}\), with equality only for \(g(z) = z{\left (1 + {z}^{-3}\right )}^{2/3}\) and its rotations. This result gave rise to the conjecture that \(\vert b_{n}\vert \leq \frac{2} {n+1}\), with equality only for rotations of

$$\displaystyle{ g(z) = z{\left (1 + {z}^{-(n+1)}\right )}^{2/(n+1)} = z + \frac{2} {n + 1}{z}^{-n} +\ldots \, . }$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. E. Bazilevich, Supplement to the papers “Zum Koeffizientenproblem der schlichten Funktionen” and “Sur les théorèmes de Koebe–Bieberbach”, Mat. Sb. 2 (44) (1937), 689–698 (in Russian).

    MATH  Google Scholar 

  2. Enrico Bombieri, A geometric approach to some coefficient inequalities for univalent functions, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 377–397.

    Google Scholar 

  3. J. Clunie, On schlicht functions, Ann. of Math. (2) 69 (1959), 511–519.

    Google Scholar 

  4. Peter L. Duren, Univalent Functions, Springer-Verlag, 1983.

    Google Scholar 

  5. M. Fekete and G. Szegő, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85–89.

    Article  Google Scholar 

  6. J. A. Jenkins, On certain coefficients of univalent functions, Analytic Functions, Princeton University Press, 1960, pp. 159–194.

    Google Scholar 

  7. Yoshihisa Kubota, On the fourth coefficient of meromorphic univalent functions, K\(\bar{\text{o}}\) dai Math. Sem. Rep. 26 (1974/75), 267–288.

    Google Scholar 

  8. Karl Löwner (Charles Loewner), Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I , Math. Ann. 89 (1923), 103–121.

    Google Scholar 

  9. Ch. Pommerenke, On the coefficients of univalent functions, J. London Math. Soc. 42 (1967), 471–474.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ch. Pommerenke, Relations between the coefficients of a univalent function, Invent. Math. 3 (1967), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, 1975.

    Google Scholar 

  12. G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421–450.

    Article  MathSciNet  MATH  Google Scholar 

  13. Anna Tsao, Disproof of a coefficient conjecture for meromorphic univalent functions, Trans. Amer. Math. Soc. 274 (1982), 783–796.

    Article  MathSciNet  MATH  Google Scholar 

  14. Haakon Waadeland, Über ein Koeffizientenproblem fl̈ur schlichte Abbildungen des |ζ| > 1, Norske Vid. Selsk. Forh., Trondheim 30 (1957), 168–170. Peter Duren

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duren, P. (2013). [59] (with P. R. Garabedian) A coefficient inequality for schlicht functions. In: Duren, P., Zalcman, L. (eds) Menahem Max Schiffer: Selected Papers Volume 1. Contemporary Mathematicians. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-8085-5_31

Download citation

Publish with us

Policies and ethics