Skip to main content

[14] The span of multiply connected domains

  • Chapter
  • First Online:
Menahem Max Schiffer: Selected Papers Volume 1

Part of the book series: Contemporary Mathematicians ((CM))

Abstract

In this seminal paper, Schiffer introduced an important conformal invariant for multiply connected plane domains, the span. The definition is in terms of conformal mappings onto canonical slit domains, and there is a complementary characterization (almost literally), in terms of an extremal problem for area under a conformal mapping. While the foundational results on conformal mapping of multiply connected domains concern the existence and uniqueness of mappings onto various canonical domains, Schiffer’s paper is an early example of using the mappings as a tool in geometric function theory. Moreover, his study of the extremal problem is clearly influenced by his development of variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [AB] most results are given for z 0 a finite point in D, unlike Schiffer’s original normalization, but this is not essential (nor was it essential for Schiffer to use z 0 = ).

References

  1. Lars V. Ahlfors, Riemann surfaces and small point sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 49–57.

    MathSciNet  Google Scholar 

  2. Lars Ahlfors and Arne Beurling, Conformal invariants and function theoretic null-sets, Acta Math. 83 (1950), 101–129.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Ahlfors and L. Sario, Riemann Surfaces, Princeton University Press, 1960.

    Google Scholar 

  4. Helmut Grunsky, Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche, Schriften Math. Sem. Inst. Angew. Math. Univ. Berlin 1 (1932), 95–140.

    Google Scholar 

  5. Yukio Kusunoki, A new proof of Schiffer’s identities on planar Riemann surfaces, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), 345–348

    Article  MathSciNet  MATH  Google Scholar 

  6. Reiner Kühnau, Die Spanne von Gebieten bei quasikonformen Abbildungen, Arch. Rational Mech. Anal. 65 (1977), 299–303.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zeev Nehari, Conformal Mapping, McGraw-Hill, 1952; Dover edition, 1975.

    Google Scholar 

  8. Burton Rodin and Leo Sario, Principal Functions, D. Van Nostrand Co., 1968

    Google Scholar 

  9. L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer-Verlag, 1970.

    Google Scholar 

  10. L. Sario and K. Oikawa, Capacity Functions, Springer-Verlag, 1969. Brad Osgood

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Osgood, B. (2013). [14] The span of multiply connected domains. In: Duren, P., Zalcman, L. (eds) Menahem Max Schiffer: Selected Papers Volume 1. Contemporary Mathematicians. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-8085-5_17

Download citation

Publish with us

Policies and ethics