Skip to main content

[13] Variation of the Green function and theory of the p-valued functions

  • Chapter
  • First Online:
Menahem Max Schiffer: Selected Papers Volume 1

Part of the book series: Contemporary Mathematicians ((CM))

  • 747 Accesses

Abstract

Let E be a compact set in the plane with transfinite diameter d(E) > 0, and let Ω denote the unbounded component of its complement. Let g(z, ζ) be Green’s function of Ω with pole at ζ. For any specified point z 0 ∈ Ω, the perturbation \({z}^{{\ast}} = z +\varepsilon {e}^{i\theta }{(z - z_{0})}^{-1}\) is analytic and univalent outside each neighborhood of z 0, provided that ɛ > 0 is sufficiently small. Let E denote the image of E, and let g (z , ζ ) be Green’s function of the corresponding domain Ω. In the paper (Schiffer, C. R. Acad. Sci. Paris, 209, 980–982, 1939), Schiffer introduces the important variational formula

$$\displaystyle{{g}^{{\ast}}(z,\infty ) = g(z,\infty )+\varepsilon \,\text{Re}\left \{{e}^{i\theta }\left [p^{\prime}(z_{ 0},z)p^{\prime}(z_{0},\infty ) - p^{\prime}(z,\infty ){(z - z_{0})}^{-1}\right ]\right \}+O{(\varepsilon }^{2})\,,\ z \in \Omega \,,}$$

where p(z, ζ) is an analytic function with real part g(z, ζ). The proof relies on an interesting representation of Green’s function g(z, ) in terms of the Fekete points of E, points that maximize the product used to define the n-diameter d n (E). Schiffer attributes this beautiful relation to Fekete and says that “the proof will appear soon,” but in fact Fekete’s paper was never published. However, the relation is implicit in a result of Leja (Math. Ann., 111, 501–504, 1935), at least for connected sets E, so that Ω is simply connected and Green’s function has the form g(z, ) = log|φ(z)|, where φ maps Ω conformally onto |w| > 1 with φ() = (cf. Schiffer, Bull. Soc. Math. France, 68, 158–176, 1940).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, second edition, Izdat. “Nauka”, Moscow, 1966; English transl., American Mathematical Society, 1969.

    Google Scholar 

  2. Herbert Grötzsch, Über ein Variationsproblem der konformen Abbildung, Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig 82 (1930), 251–263.

    Google Scholar 

  3. Jacques Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, Mémoires présentés par divers savants à l’Académie de Sciences 33 (1908), No 4, 1–128.

    Google Scholar 

  4. Gaston Julia, Sur une équation aux dérivées fonctionnelles liée à la représentation conforme, Ann. Sci. École Norm. Sup. (3) 39 (1922), 1–28.

    Google Scholar 

  5. M. Leja, Construction de la fonction analytique effectuant la représentation conforme d’un domaine plan quelconque sur le circle, Math. Ann. 111 (1935), 501–504.

    Article  MathSciNet  Google Scholar 

  6. G. Pólya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, III , Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1929, 55–62.

    Google Scholar 

  7. G. Szegő, Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 21 (1924), 203–208.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duren, P. (2013). [13] Variation of the Green function and theory of the p-valued functions. In: Duren, P., Zalcman, L. (eds) Menahem Max Schiffer: Selected Papers Volume 1. Contemporary Mathematicians. Birkhäuser, New York, NY. https://doi.org/10.1007/978-0-8176-8085-5_16

Download citation

Publish with us

Policies and ethics