Finding Heat Kernels Using the Laguerre Calculus

  • Ovidiu Calin
  • Der-Chen Chang
  • Kenro Furutani
  • Chisato Iwasaki
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


In this chapter, we are going to use a harmonic analysis method to construct the heat kernels and fundamental solutions of the sub-Laplacian on the Heisenberg group. This method relies on Laguerre calculus. We shall start with a beautiful idea of Mikhlin from his 1936 study of convolution operators on 2. Let K be a principal value (P.V.) convolution operator on 2:
$$\mathbf{K}(f)(x) {=\lim }_{\epsilon \rightarrow 0}{ \int \nolimits \nolimits }_{\vert y\vert >\epsilon }K(y)f(x - y)dy,$$
where fC0 (2) and KC (2 ∖ { (0, 0)}) is homogeneous of degree − 2 with vanishing mean value; i.e.,
$${\int \nolimits \nolimits }_{\vert y\vert =1}K(y)dy = 0.$$
Thus we can write
$$K(x) = \frac{f(\theta )} {{r}^{2}},\qquad x = {x}_{1} + i{x}_{2} = r{e}^{i\theta },$$
$$f(\theta ) ={ \sum \nolimits }_{m\in \mathbb{Z},m\neq 0}{f}_{m}{e}^{im\theta }.$$
Suppose that g is another smooth function on [0, 2π] with
$$g(\theta ) ={ \sum \nolimits }_{m\in \mathbb{Z},m\neq 0}{g}_{m}{e}^{im\theta }.$$
Then g induces a principal value convolution operator G on 2 with kernel \(\frac{g(\theta )} {{r}^{2}}\). In [91], we found the following identity.


Fundamental Solution Heat Kernel Heisenberg Group Inverse Fourier Transform Convolution Operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ovidiu Calin
    • 1
  • Der-Chen Chang
    • 2
  • Kenro Furutani
    • 3
  • Chisato Iwasaki
    • 4
  1. 1.Department of MathematicsEastern Michigan UniversityYpsilantiUSA
  2. 2.Department of Mathematics and StatisticsGeorgetown UniversityWashingtonUSA
  3. 3.Department of Mathematics ScienceUniversity of TokyoNodaJapan
  4. 4.Department of Mathematical ScienceUniversity of HyogoHimejiJapan

Personalised recommendations