Advertisement

G.W. Stewart pp 695-729 | Cite as

Papers on Krylov Subspace Methods for the Eigenproblem

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)

Keywords

Krylov Subspace Rayleigh Quotient Lanczos Algorithm Ritz Vector Unitarily Invariant Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17–29.MathSciNetMATHGoogle Scholar
  2. 2.
    Z. Bai and J. W. Demmel, On swapping diagonal blocks in real Schur form, Linear Algebra Appl., 186 (1993), pp. 73–95.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94–125.MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins University Press, Baltimore, MD, 1989.MATHGoogle Scholar
  5. 5.
    Z. Jia, Refined iterative algorithm based on Arnoldi s process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997), pp. 1–23.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Research Nat. Bur. Standards, 45 (1950), pp. 255–282.MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. B. Lehoucq, private communication.Google Scholar
  8. 8.
    R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.CrossRefGoogle Scholar
  10. 10.
    R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154156 (1991), pp. 289–309.CrossRefGoogle Scholar
  11. 11.
    R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comp., 65 (1996), pp. 1213–1230.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R. B. Morgan, GMRES with Deflated Restarting, Department of Mathematics, Baylor University, Waco, TX, 1999.Google Scholar
  13. 13.
    J. A. Scott, An Arnoldi code for computing selected eigenvalues of sparse, real, unsymmetric matrices, ACM Trans. Math. Software, 21 (1995), pp. 432–475.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. W. Stewart, Matrix Algorithms I: Basic Decompositions, SIAM, Philadelphia, 1998.CrossRefMATHGoogle Scholar
  17. 17.
    D. S. Watkins, Forward stability and transmission of shifts in the QR algorithm, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 469–487.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.MathSciNetCrossRefMATHGoogle Scholar
  19. 1.
    M. Genseberger and G. L. G. Sleijpen, Alternative correction equations in the Jacobi-Davidson method, Numer. Linear Algebra Appl., 6 (1999), pp. 235–253.MathSciNetCrossRefMATHGoogle Scholar
  20. 2.
    Z. Jia and G. W. Stewart, An analysis of the Rayleigh Ritz method for approximating eigenspaces, Math. Comp., 70 (2001), pp. 637–647.MathSciNetCrossRefMATHGoogle Scholar
  21. 3.
    R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl., 154–156 (1991), pp. 289–309.CrossRefGoogle Scholar
  22. 4.
    G. W. Stewart, A Krylou Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 601–614.MathSciNetCrossRefMATHGoogle Scholar
  23. 5.
    G. W. Stewart, Matrix Algorithms Volume II: Eigensystems, SIAM, Philadelphia, 2001.CrossRefGoogle Scholar
  24. 1.
    W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.MathSciNetMATHGoogle Scholar
  25. 2.
    A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, 1997.CrossRefMATHGoogle Scholar
  26. 3.
    R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.CrossRefMATHGoogle Scholar
  27. 4.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms, Wiley, New York, 1992.MATHGoogle Scholar
  28. 5.
    G.W. Stewart, A KrylovSchur algorithm for large eigenproblems. Technical Report TR-4127, Department of Computer Science, University of Maryland, College Park, 2000, SIAM J. Matrix Anal. Appl. (to appear).Google Scholar
  29. 6.
    G.W. Stewart, Matrix Algorithms II: Eigensystems. SIAM, Philadelphia, PA, 2001 (to appear). Pre-print available at http://www.cs.umd.edu/ stewart.
  30. 7.
    G.W. Stewart, J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.MATHGoogle Scholar
  31. 1.
    J. Grcar, Analyses of the Lanczos Algorithm and of the Approximation Problem in Richardson s Method, Ph.D. thesis, University of Illinois at UrbanaChampaign, 1981.Google Scholar
  32. 2.
    Z. Jia and G. W. Stewart, An analysis of the Rayleigh Ritz method for approximating eigenspaces, Math. Comp., 70 (2001), pp. 637–647.MathSciNetCrossRefMATHGoogle Scholar
  33. 3.
    Y. Saad, Numerical Methods for Large Eigenvalue Problems: Theory and Algorithms, John Wiley, New York, 1992.MATHGoogle Scholar
  34. 4.
    H. D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods, Linear Algebra Appl., 61 (1984), pp. 101–132.MathSciNetCrossRefMATHGoogle Scholar
  35. 5.
    H. D. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comp., 42 (1984), pp. 115–142.MathSciNetCrossRefMATHGoogle Scholar
  36. 6.
    G. W. Stewart, A Krylou Schur algorithm for large eigenproblems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 601–614.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations