G.W. Stewart pp 521-631 | Cite as

Papers on the SVD, Eigenproblem and Invariant Subspaces: Algorithms

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)


Invariant Subspace Rayleigh Quotient Block Diagonalization Singular Subspace Hessenberg Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauer, F. L.: Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. Z. Angew. Math. Phys. 8, 214–235 (1957).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Householder, A. S.: The theory of matrices in numerical analysis. New York: Blaisdell Publishing Co. 1964.MATHGoogle Scholar
  3. 3.
    Swanson, C. A.: An inequality for linear transformations with eigenvalues. Bull. Amer. Math. Soc. 67, 607–608 (1961).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Wilkinson, J. H.: Convergence of the LR, QR, and related algorithms. Comp. J. 8, 77–84 (1965).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    The algebraic eigenvalue problem. Oxford: Clarendon Press 1965.Google Scholar
  6. [1]
    R. Bhatia, L. Elsner, and G. Krause, Bounds for the variation of the roots of a polynomial and the eigenvalues of a matrix, Linear Algebra and Its Applications 142 (1990), 195–209. MR 92i:12001MathSciNetCrossRefMATHGoogle Scholar
  7. [2]
    L. Elsner, An optimal bound for the spectral variation of two matrices, Linear Algebra and Its Applications 71 (1985), 77–80. MR 87c:15035MathSciNetCrossRefMATHGoogle Scholar
  8. [3]
    G. H. Golub and C. F. Van Loan, Matrix computations, second ed., Johns Hopkins University Press, Baltimore, MD, 1989. MR 90d:65055MATHGoogle Scholar
  9. [4]
    I. C. F. Ipsen, Absolute and relative perturbation bounds for invariant subspaces of matrices, Technical Report TR9735, Center for Research in Scientific Computation, Mathematics Department, North Carolina State University, 1998.Google Scholar
  10. [5]
    Z. Jia, Some numerical methods for large unsymmetric eigenproblems, Ph.D. thesis, University of Bielefeld, 1994.Google Scholar
  11. [6]
    ——, The convergence of generalized Lanczos methods for large unsymmetric eigenproblems, SIAM Journal on Matrix Analysis and Applications 16 (1995), 843862. MR 96d:65062Google Scholar
  12. [7]
    ——, Refined iterative algorithm based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra and Its Applications 259 (1997), 123. MR 98c:65060Google Scholar
  13. [8]
    ——, Generalized block Lanczos methods for large unsymmetric eigenproblems, Numerische Mathematik 80 (1998), 171189. MR 95f:65059Google Scholar
  14. [9]
    ——, A refined iterative algorithm based on the block Arnoldi algorithm, Linear Algebra and Its Applications 270 (1998), 171189. MR 98m:65055Google Scholar
  15. [10]
    ——, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra and Its Applications 287 (1999), 191214. MR 99j:65046Google Scholar
  16. [11]
    ——, A refined subspace iteration algorithm for large sparse eigenproblems, To appear in Applied Numerical Mathematics., 1999.Google Scholar
  17. [12]
    Y. Saad, Numerical methods for large eigenvalue problems: Theory and algorithms, John Wiley, New York, 1992. MR 93h:65052MATHGoogle Scholar
  18. [13]
    G. L. G. Sleijpen and H. A. Van der Vorst, A Jacobi Davidson iteration method for linear eigenvalue problems, SIAM Journal on Matrix Analysis and Applications 17 (1996), 401–425. MR 96m:65042MathSciNetCrossRefMATHGoogle Scholar
  19. [14]
    G. W. Stewart and J.-G. Sun, Matrix perturbation theory, Academic Press, New York, 1990. MR 92a:65017MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations