G.W. Stewart pp 391-520 | Cite as

Papers on the Eigenproblem and Invariant Subspaces: Perturbation Theory

Part of the Contemporary Mathematicians book series (CM)


Invariant Subspace Singular Vector Hermitian Matrice Generalize Eigenvalue Problem Positive Definite Matrice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Davis andW. Kahan, The rotation of eigenvectors by a perturbation. III, this Journal, 7 (1970), pp. 1–46.MathSciNetMATHGoogle Scholar
  2. 2.
    G. Lumer andM. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc., 10 (1969), pp. 32–41.MathSciNetCrossRefGoogle Scholar
  3. 3.
    N. Dunford andJ. Schwartz, Linear Operators, Part II, Interscience, New York, 1963.MATHGoogle Scholar
  4. 4.
    F. Riesz andB. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, 1955.Google Scholar
  5. 5.
    M. Rosenblum, On the operator equation BX – XA = Q, Duke Math. J., 23 (1956), pp. 263–269.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. Ruhe, An algorithm for numerical determination of the structure of a general matrix, BIT, 10 (1970), pp. 196–216.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    ——, Perturbation bounds for means of eigenvalues and invariant subspaces, Ibid., 10 (1970), pp. 343–354.Google Scholar
  8. 8.
    J. M. Varah, The computation of bounds for the invariant subspaces of a general matrix operator, Tech. Rep. CS66, Stanford Univ., Stanford, Calif., 1967.Google Scholar
  9. 9.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations