Advertisement

G.W. Stewart pp 340-390 | Cite as

Papers on Least Squares, Projections, and Generalized Inverses

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)

Keywords

Asymptotic Form Generalize Inverse Unitary Matrice Spectral Norm Full Column Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. N. Afriat, Orthogonal and oblique projectors and characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc., 53 (1967), pp. 800–816.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Ben-israel and A. Charnes, Contributions to the theory of generalized inverses, this Journal, 11 (1963), pp. 667–699.MathSciNetGoogle Scholar
  3. 3.
    ——, On error bounds for the generalized inverse, SIAM J. Numer. Anal., 3 (1966), pp. 585–592.Google Scholar
  4. 4.
    G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, Ibid., 2 (1965), pp. 205–224.MathSciNetGoogle Scholar
  5. 5.
    G. Golub, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965), pp. 206–216.CrossRefGoogle Scholar
  6. 6.
    G. Golub and J. H. Wilkinson, Note on iterative refinement of least squares solution, Ibid., 9 (1966), pp. 139–148.MathSciNetGoogle Scholar
  7. 7.
    A. S. Householder, Unitary triangularization of a nonsymmetric matrix, J. Assoc. Comput. Mach., 5 (1958), pp. 339–342.Google Scholar
  8. 8.
    ——, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.Google Scholar
  9. 9.
    E. H. Moore, On the reciprocal of the general algebraic matrix, Abstract, Bull. Amer. Math. Soc., 26 (1919–20), pp. 394–395.Google Scholar
  10. 10.
    R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), pp. 406–413.CrossRefGoogle Scholar
  11. 11.
    ——, On best approximate solution of linear matrix equations, Ibid., 52 (1956), pp. 17–19.Google Scholar
  12. 12.
    J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, New Jersey, 1963.MATHGoogle Scholar
  13. 13.
    N. N. Abdelmalek (1974), On the solution of the linear least squares problem and pseudo-inverses, Computing, 13, pp. 215–228.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    S. N. Afriat (1957), Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc., 53, pp. 800–816.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Ben-Israel (1966), On error bounds for generalized inverses, SIAM J. Numer. Anal., 3, pp. 585–592.Google Scholar
  16. 16.
    A. Ben-Israel andT. N. E. Greville (1974), Generalized Inverses: Theory and Applications, John Wiley, New York.MATHGoogle Scholar
  17. 17.
    Å. Björk andG. H. Golub (1973), Numerical methods for computing angles between linear subspaces, Math. Comp., 27, pp. 579–594.Google Scholar
  18. 18.
    T. L. Boullion andP. L. Odell (1971), Generalized Inverse Matrices, John Wiley, New York.MATHGoogle Scholar
  19. 18.
    Chandler Davis andW. M. Kahan (1970), The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal., 7, pp. 1–46.Google Scholar
  20. 19.
    I. C. Gohberg andM. G. Krein (1969), Introduction to the Theory of Nonself-adjoint Operators, American Mathematical Society, Providence, R.I.Google Scholar
  21. 20.
    G. H. Golub (1965), Numerical methods for solving linear least squares problems, Number. Math., 7, pp. 206–216.CrossRefGoogle Scholar
  22. 21.
    G. H. Golub andJ. H. Wilkinson (1966), Note on the iterative refinement of least squares solution, Numer. Math., 9, pp. 139–148.MathSciNetCrossRefGoogle Scholar
  23. 22.
    G. H. Golub andV. Pereyra (1973), The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10, pp. 413–432.MathSciNetCrossRefGoogle Scholar
  24. 23.
    ——(1975), Differentiation of pseudoinverses, separable nonlinear least squares problems, and other tales, manuscript.Google Scholar
  25. 24.
    R. J. Hanson andC. L. Lawson (1969), Extensions and applications of the Householder algorithm for solving linear least squares problems, Math. Comp., 23, pp. 787–812.MathSciNetCrossRefGoogle Scholar
  26. 25.
    J. Z. Hearon andJ. W. Evans (1968), Differentiable generalized inverses, J. Res. Nat. Bur. Stand., Sect. B, 72B, pp. 109–113.Google Scholar
  27. 26.
    A. S. Householder (1964), The Theory of Matrices in Numerical Analysis, Dover, New York.MATHGoogle Scholar
  28. 27.
    T. Kato (1966), Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.CrossRefMATHGoogle Scholar
  29. 28.
    C. L. Lawson andR. J. Hanson (1974), Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, N.J.MATHGoogle Scholar
  30. 29.
    L. Mirsky (1960), Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford Ser., 11, no. 2, pp. 55–59.MathSciNetGoogle Scholar
  31. 30.
    J. von Neumann (1937), Some matrix-inequalities and metrization of matric-space, Tomsk. Univ. Rev., 1, pp. 286–300.Google Scholar
  32. 31.
    M. Pavel-Parvu andA. Korganoff (1969), Iteration functions for solving polynomial equations, Constructive Aspects of the Fundamental Theorem of Algebra, B. Dejon and P. Henrici, eds., John Wiley, New York.Google Scholar
  33. 32.
    R. Penrose (1955), A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51, pp. 506–513.CrossRefGoogle Scholar
  34. 33.
    ——(1956), On best approximate solution of linear matrix equations, Ibid., 52, pp. 17–19.Google Scholar
  35. 34.
    V. Pereyra (1969), Stability of general systems of linear equations, Aequat. Math., 2, pp. 194–206.MathSciNetCrossRefGoogle Scholar
  36. 34.
    C. R. Rao andS. K. Mitra (1971), Generalized Inverse of Matrices and Its Applications, John Wiley, New York.MATHGoogle Scholar
  37. 35.
    A. van der Sluis (1975), Stability of the solutions of linear least squares problems, Numer. Math., 23, pp. 241–254.Google Scholar
  38. 36.
    G. W. Stewart (1969), On the continuity of the generalized inverse, SIAM J. Appl. Math., 17, pp. 33–45.CrossRefGoogle Scholar
  39. 37.
    ——(1973), Introduction to Matrix Computations, Academic Press, New York.Google Scholar
  40. 38.
    P.-Å. Wedin (1969), On pseudo-inverses of perturbed matrices, Lund Univ. Comput. Sci. Tech. Rep., Lund, Sweden.Google Scholar
  41. 39.
    ——(1973), Perturbation theory for pseudo-inverses, BIT, 13, pp. 217–232.Google Scholar
  42. 39.
    J. H. Wilkinson (1965), The Algebraic Eigenvalue Problem, Oxford University Press, London.MATHGoogle Scholar
  43. 40.
    S. J. Haberman, The Analysis of Frequency Data, Univ. of Chicago Press, Chicago, 1974.MATHGoogle Scholar
  44. 41.
    P. J. Huber, Robust Statistics, Wiley, New York, 1981.CrossRefMATHGoogle Scholar
  45. 42.
    N. Marmarker, A new polynomial time algorithm for linear programming, Combinatorica 4:373–395 (1984).MathSciNetCrossRefGoogle Scholar
  46. 43.
    G. W. Stewart, An Iterative Method for Solving Linear Inequalities, Univ. of Maryland Computer Science Technical Report TR-1833, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations