G.W. Stewart pp 263-339 | Cite as

Papers on Updating and Downdating Matrix Decompositions

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)


Orthogonal Matrix Cholesky Factor Plane Rotation Secant Method Stable Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Bartels, J. Stoer and Ch. Zenger, A realization of the simplex method based on triangular decomposition, Handbook for Automatic Computation II. Linear Algebra, J. H. Wilkinson and C. Reinsch, eds., Springer, New York, 1971, pp. 152–190.CrossRefGoogle Scholar
  2. 2.
    R. P. Brent, On maximizing the efficiency of algorithms for solving systems of nonlinear equations, IBM Research RC 3725, Yorktown Heights, New York, 1972.Google Scholar
  3. 3.
    J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.MATHGoogle Scholar
  4. 4.
    P. Wolfe, The secant method for simultaneous nonlinear equations, Comm. ACM, 2 (1959), pp. 12–13.CrossRefMATHGoogle Scholar
  5. 5.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.MATHGoogle Scholar
  6. 6.
    GEORGE E. FORSYTHE & CLEVE B. MOLER, Computer Solution of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR 36 #2306.MATHGoogle Scholar
  7. 7.
    P. E. GILL, G. H. GOLUB, W. MURRAY & M. A. SAUNDERS, Methods for modifying matrix factorizations, Math. Comp., v. 28, 1974, pp. 505–535. MR 49 #8299.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    PHILIP E. GILL, WALTER MURRAY & MICHAEL A. SAUNDERS, Methods for computing and modifying the LDV factors of a matrix, Math. Comp., v. 29, 1975, pp. 1051–1077.MathSciNetMATHGoogle Scholar
  9. 9.
    W. B. GRAGG & G. W. STEWART, A stable variant of the secant method for solving nonlinear equations, SIAM J. Numer. Anal., v. 13, 1976.Google Scholar
  10. 10.
    ALSTON S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964. MR 30 #5475.MATHGoogle Scholar
  11. 11.
    DONALD E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.MATHGoogle Scholar
  12. 12.
    CHARLES L. LAWSON & RICHARD J. HANSON, Solving Least Squares Problems, Prentice-Hall Ser. in Automatic Computation, Prentice-Hall, Englewood Cliffs, N. J., 1974. MR 51 #2270.MATHGoogle Scholar
  13. 13.
    HEINZ RUTISHAUSER, Handbook for Automatic Computation. Vol. 1/Part a: Description of ALGOL 60, Die Grundlehren der math. Wissenschaften, Band 135, Springer-Verlag, New York, 1967.Google Scholar
  14. 14.
    G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.MATHGoogle Scholar
  15. 15.
    J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, N. J., 1963. MR 28 #4661.MATHGoogle Scholar
  16. 16.
    J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR 32 #1894.MATHGoogle Scholar
  17. 17.
    Dempster, A. P. 1969 Elements of Continuous Multivariate Analysis. Reading, Massachusetts: Addison-Wesley.MATHGoogle Scholar
  18. 18.
    Gill, P. E., Golub, G. H., Murray, W. & Saunders, M. A. 1974 Methods for modifying matrix factorizations. Maths Comput. 28, 505–535.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Golub, G. H. 1965 Numerical methods for solving least squares problems. Num. Math. 7, 206–216.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Golub, G. H. & Styan, G. P. 1974 Numerical computations for univariate linear models, J. Stat. Comput. Simul. 2, 253–274.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lawson, C. L. & Hanson, R. J. 1974 Solving Least Squares Problems. Englewood Cliffs, N.J.: Prentice-Hall.MATHGoogle Scholar
  22. 22.
    Saunders, M. A. 1972 Large scale linear programming using the Cholesky factorization. Stanford University report STANCS72252.Google Scholar
  23. 22.
    Stewart, G. W. 1973 Introduction to Matrix Computations. New York: Academic Press.MATHGoogle Scholar
  24. 23.
    Wilkinson, J. H. 1965 The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.MATHGoogle Scholar
  25. 1.
    G. Adams, M. F. Griffin, and G. W. Stewart, “Direction-of-arrival estimation using the rank-revealing URV decomposition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, 1991.Google Scholar
  26. 25.
    J. R. Bunch and C. P. Nielsen, “Updating the singular value decomposition,” Numer. Math., vol. 31, pp. 111–129, 1978.MathSciNetCrossRefMATHGoogle Scholar
  27. 26.
    T. F. Chan, “Rank revealing QR factorizations,” Linear Alg. Its Appl., vol. 88/89, pp. 67–82, 1987.CrossRefGoogle Scholar
  28. 27.
    G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Baltimore, MD: Johns Hopkins University Press, 1989.MATHGoogle Scholar
  29. 28.
    M. F. Griffin, personal communication, 1990.Google Scholar
  30. 29.
    N. J. Higham, “A survey of condition number estimation for triangular matrices,” SIAM Rev., vol. 29, pp. 575–596, 1987.MathSciNetCrossRefGoogle Scholar
  31. 30.
    M. Moonen, P. Van Dooren, and J. Vandewalle, “Combined Jacobitype algorithms in signal processing,” in Proc. 2nd Int. Workshop SVD, Signal Processing, 1990, pp. 83–88.Google Scholar
  32. 31.
    G. W. Stewart, Introduction to Matrix Computations. New York: Academic, 1974.Google Scholar
  33. 32.
    R. J. Vaccaro, Ed., Proc. 2nd Int. Workshop SVD Signal Processing, to be published.Google Scholar
  34. 33.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford, England: Clarendon, 1965.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations