Advertisement

G.W. Stewart pp 137-262 | Cite as

Papers on Matrix Decompositions

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)

Keywords

Gaussian Elimination Triangular Matrice Cholesky Factorization Plane Rotation Latent Semantic Indexing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, this Journal, 2 (1965), pp. 202–224.MathSciNetGoogle Scholar
  2. 2.
    H. Rutishauser, Computational aspects of F. L. Bauer’s simultaneous iteration method, Numer. Math., 13 (1969), pp. 4–13.CrossRefMATHGoogle Scholar
  3. 3.
    G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev., 15 (1973), pp. 727–764.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    ——, Introduction to Matrix Computations, Academic Press, New York, 1973.Google Scholar
  5. 5.
    ——, Simultaneous iteration for computing invariant subspaces of a non-Hermitian matrix, Numer. Math., 25 (1976), pp. 123136.Google Scholar
  6. 6.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965.MATHGoogle Scholar
  7. 7.
    J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.CrossRefGoogle Scholar
  8. 8.
    F. L. Bauer and C. Reinsch, Inversion of positive definite matrices by the Gauss–Jordan method, in Handbook for Automatic Computation II. Linear Algebra, J. H. Wilkinson and C. Reinsch, eds., Springer, New York, 1971, pp. 45–49.CrossRefGoogle Scholar
  9. 9.
    Tony Chan, An improved algorithm for computing the singular value decomposition, ACM Trans. Math. Software, 8 (1982), pp. 72–83.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, The LINPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.CrossRefGoogle Scholar
  11. 11.
    G. H. Golub, Numerical methods for solving least squares problems, Numer. Math., 7 (1965), pp. 206–216.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    G. H. Golub and C. Reinsch, Singular value decomposition and least squares solution, Numer. Math., 14 (1970), pp. 403–420.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    J. H. Goodnight, A tutorial on the SWEEP operator, Amer. Statistician, 33 (1979), pp. 149–158.MATHGoogle Scholar
  14. 14.
    J. W. Daniel, W. B. Gragg, L. Kaufman and G. W. Stewart, Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization, Math. Comp., 30 (1976), pp. 772–795.MathSciNetMATHGoogle Scholar
  15. 15.
    C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrica, 1 (1936), pp. 211–218.CrossRefMATHGoogle Scholar
  16. 16.
    L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., 11 (1960), pp. 50–59.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    W. C. Rheinboldt, Numerical methods for a class of finite dimensional bifurcation problems, SIAM J. Numer. Anal., 15 (1978), pp. 1–11.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    G. A. F. Seber, Linear Regression Analysis, John Wiley, New York, 1977.MATHGoogle Scholar
  19. 19.
    G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1974.Google Scholar
  20. 20.
    ——, On the perturbation of pseudo-inverses, projections, and linear least squares problems, SIAM Rev., 19 (1977), pp. 634662.Google Scholar
  21. 21.
    ——, The efficient generation of random orthogonal matrices with an application to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403409.Google Scholar
  22. 22.
    ——, Assessing the effects of variable error in linear regression, University of Maryland Computer Science Technical Report No. 818, 1979.Google Scholar
  23. 23.
    ——, A second order perturbation expansion for small singular values, University of Maryland Computer Science Technical Report No. 1241, 1982.Google Scholar
  24. 24.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.MATHGoogle Scholar
  25. 25.
    A. Barrland, Perturbation bounds for the LDL H and the LU factorizations, BIT, 31 (1991), pp. 358–363.MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. W. Stewart, Perturbation bounds for the QR factorization of a matrix, SIAM J. Numer. Anal., 14 (1977), pp. 509–518.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.MATHGoogle Scholar
  28. 28.
    J.-G. Sun, Perturbation bounds for the Cholesky and QR factorizations, BIT, 31 (1991), pp. 341–352.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    A. Bojanczyk, J. G. Nagy, and R. J. Plemmons, Block RLS using row Householder reflections, Linear Algebra Appl., 188189 (1993), pp. 31–62.MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User’s Guide, SIAM, Philadelphia, 1979.CrossRefGoogle Scholar
  31. 31.
    G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, 2nd ed., 1989.MATHGoogle Scholar
  32. 32.
    M. T. Heath, A. J. Laub, C. C. Paige, and R. C. Ward, Computing the SVD of a product of two matrices, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1147–1159.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    R. Mathias and G. W. Stewart, A block qr algorithm and the singular value decomposition, Linear Algebra Appl., 182 (1993), pp. 91–100.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    G. W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Processing, 40 (1992), pp. 1535–1541.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations