Advertisement

G.W. Stewart pp 121-123 | Cite as

Other Contributions

  • Misha E. Kilmer
  • Dianne P. O’Leary
Part of the Contemporary Mathematicians book series (CM)

Abstract

The preceding seven chapters of this commentary had outlined some of Stewart’s important contributions to matrix algorithms and matrix perturbation theory.

Keywords

Linear Algebra Lunch Break Matrix Algorithm Numerical Linear Algebra Concise Explanation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.Anderson, Z.Bai, C.Bischof, S.Blackford, J.Demmel, J.Dongarra, J.DuCroz, A.Greenbaum, S.Hammarling, A.McKenney, etal. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 3 edition, 1999. 31, 35, 100, 108Google Scholar
  2. 2.
    Y.-H. Au-Yeung. Some theorems on real pencil and simultaneous diagonalization of two Hermitian bilinear forms. Proceedings of the American Mathematical Society, 23:246–253, 1969. 109Google Scholar
  3. 3.
    Y.-H. Au-Yeung. A theorem on mapping from a sphere to the circle and the simultaneous diagonalization of two Hermitian matrices. Proceedings of the American Mathematical Society, 20:545–548, 1969. 109Google Scholar
  4. 4.
    Z.Bai. The CSD, GSVD, their applications and computations. IMA Preprint Series 958, Institute of Mathematics and Applications, University of Minnesota, 1992. 109Google Scholar
  5. 5.
    Z.Bai and J.Demmel. On swapping diagonal blocks in real Schur form. Linear Algebra and Its Applications, 185:203–218, 1993. 101Google Scholar
  6. 6.
    J.Barlow and J.W. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM Journal on Numerical Analysis, 27(3):762–791, 1990. 84Google Scholar
  7. 7.
    J.B. Barlow, M.M. Monahemi, and D.P. O’Leary. Constrained matrix Sylvester equations. SIAM Journal on Matrix Analysis and Applications, 13:1–9, 1992. 38Google Scholar
  8. 8.
    J.L. Barlow, H.Erbay, and I.Slapnicar. An alternative algorithm for the refinement of ULV decompositions. SIAM Journal on Matrix Analysis and Applications, 27(1):198–211, 2006. 59Google Scholar
  9. 9.
    J.G.P. Barnes. An algorithm for solving non-linear equations based on the secant method. The Computer Journal, 8(1):66, 1965. 51Google Scholar
  10. 10.
    R.H. Bartels and G.H. Golub. The simplex method of linear programming using LUdecomposition. Communications of the ACM, 12:266–268, 1969. 49Google Scholar
  11. 11.
    F.L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme. Z. Angew. Math. Phys., 8:214–235, 1957. 96, 98Google Scholar
  12. 12.
    A.Ben-Israel. On error bounds for generalized inverses. SIAM Journal on Numerical Analysis, pages 585–592, 1966. 63Google Scholar
  13. 13.
    M.W. Berry. Private communication, Aug., 2009. 43, 44Google Scholar
  14. 14.
    R.Bhatia and R.-C. Li. On perturbations of matrix pencils with real spectra. II. Mathematics of Computation, 65(214):637–645, 1996. 109Google Scholar
  15. 15.
    Å.Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996. 53, 65, 70Google Scholar
  16. 16.
    Å.Björck and G.H. Golub. Numerical methods for computing angles between linear subspaces. Mathematics of Computation, 27:579–594, 1973. 66Google Scholar
  17. 17.
    A.D. Bojanczyk, J.G. Nagy, and R.J. Plemmons. Block RLS using row Householder reflections. Linear Algebra and Its Applications, 188:31–61, 1993. 45Google Scholar
  18. 18.
    C.G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 19:577–593, 1965. 51Google Scholar
  19. 19.
    C.G. Broyden. On the discovery of the ‘good Broyden’ method. Mathematical Programming, 87(2):209–213, 2000. 51Google Scholar
  20. 20.
    R.A. Brualdi. Private communication, Aug. 17, 2009. 121Google Scholar
  21. 21.
    J.R. Bunch. Private communication, Sep. 24, 2009. 30Google Scholar
  22. 22.
    R.Byers and D.Kressner. Structured condition numbers for invariant subspaces. SIAM Journal on Matrix Analysis and Applications, 28(2):326–347, 2006. 92Google Scholar
  23. 23.
    Z.Cao and F.Zhang. Direct methods for ordering eigenvalues of a real matrix. Chinese University Journal of Computational Mathematics, 1:27–36, 1981. (in Chinese). 100Google Scholar
  24. 24.
    X.W. Chang and C.C. Paige. On the sensitivity of the LU factorization. BIT, 38(3):486–501, 1998. 41Google Scholar
  25. 25.
    M.Clint and A.Jennings. A simultaneous iteration method for the unsymmetric eigenvalue problem. Journal of the Institute of Mathematics and Its Applications, 8:111–121, 1971. 98Google Scholar
  26. 26.
    P.-J. Courtois. Error analysis in nearly-completely decomposable stochastic systems. Econometrica, 43(4):691–709, 1975. 82, 83Google Scholar
  27. 27.
    P.-J. Courtois. Decomposability. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1977. Queueing and computer system applications, ACM Monograph Series. 82, 83Google Scholar
  28. 28.
    C.R. Crawford. A stable generalized eigenvalue problem. SIAM Journal on Numerical Analysis, 6:854–860, 1976. 109Google Scholar
  29. 29.
    G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963. 48, 54Google Scholar
  30. 30.
    C.Davis and W.M. Kahan. Some new bounds on perturbations of subspaces. Bull. Amer. Math. Soc, 75:863–868, 1969. 66, 72, 73Google Scholar
  31. 31.
    C.Davis and W.M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM Journal on Numerical Analysis, pages 1–46, 1970. 66, 72, 73, 104, 109Google Scholar
  32. 32.
    D.Day. How the QR algorithm fails to converge and how to fix it. Tech Report 96-0913J, Sandia National Laboratory, April 1996. 100Google Scholar
  33. 33.
    J.Demmel. The Condition Number of Equivalence Transformations that Block Diagonalize Matrix Pencils. SIAM Journal on Numerical Analysis, 20(3):599–610, June 1983. 104Google Scholar
  34. 34.
    J.Demmel and B.Kågström. Computing stable eigendecompositions of matrix pencils. Linear Algebra and Its Applications, 88–89:139–186, 1987. 106Google Scholar
  35. 35.
    J.W. Demmel. Computing stable eigendecompositions of matrices. Linear Algebra and Its Applications, 79:163–193, 1986. 92Google Scholar
  36. 36.
    J. W. Demmel and K.Veselić. Jacobi’s method is more accurate than QR. SIAM Journal on Matrix Analysis and Applications, 13(4):1204–1245, 1992. 84Google Scholar
  37. 37.
    I.I. Dikin. On convergence of an iterative process. Upravlyaemye Systemy, 12:54–60, 1974. In Russian. 70Google Scholar
  38. 38.
    J.Dongarra, S.Hammarling, and J.Wilkinson. Numerical considerations in computing invariant subspaces. SIAM Journal on Matrix Analysis and Applications, 13:145–161, 1992. 100Google Scholar
  39. 39.
    J.J. Dongarra, P.Luszczek, and A.Petitet. The Linpack benchmark: Past, present and future. Concurrency: Practice and Experience, 15(9):803–820, 2003. 31Google Scholar
  40. 40.
    P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2007. 45Google Scholar
  41. 41.
    P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2007. 45Google Scholar
  42. 42.
    P.Drineas, R.Kannan, and M.W. Mahoney. Fast Monte Carlo algorithms for matrices III: Computing a compressed approximate matrix decomposition. SIAM Journal on Computing, 36(1):184–206, 2007. 45Google Scholar
  43. 43.
    P.Drineas, M.W. Mahoney, and S.Muthukrishnan. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844–881, 2008. 45Google Scholar
  44. 44.
    S.Eastman and D.Estep. A power method for nonlinear operators. Appl. Anal., 86(10):1303–1314, 2007. 93Google Scholar
  45. 45.
    L.Elsner and P.Lancaster. The spectral variation of pencils of matrices. J. Comp. Math., 3(3):262–274, 1985. 106Google Scholar
  46. 46.
    L.Elsner and J.-G. Sun. Perturbation theorems for the generalized eigenvalue problem. Linear Algebra and Its Applications, 48:341–357, 1982. 106Google Scholar
  47. 47.
    H.Erbay, J.L. Barlow, and Z.Zhang. A modified Gram–Schmidt-based downdating technique for ULV decompositions with applications to recursive TLS problems. Computational Statistics and Data Analysis, 41(1):195–209, 2002. 57Google Scholar
  48. 48.
    S.P. Evans. A quasi-stationary analysis of a virtual path in a B-ISDN network shared by services with very different characteristics. Computer Networks and ISDN Systems, 20(1-5):391–399, 1990. 93Google Scholar
  49. 49.
    D.K. Faddeev, V.N. Kublanovskaya, and V.N. Faddeeva. Solution of linear algebraic systems with rectangular matrices. Proc. Steklov Inst. Math, 96:93–111, 1968. Reference provided by J. L. Barlow. 56Google Scholar
  50. 50.
    H.-r. Fang and Y.Saad. Two classes of multisecant methods for nonlinear acceleration. Numerical Linear Algebra with Applications, 16(3):197–221, 2009. 51Google Scholar
  51. 51.
    R.D. Fierro and J.R. Bunch. Bounding the subspaces from rank revealing two-sided orthogonal decompositions. SIAM Journal on Matrix Analysis and Applications, 16:743–759, 1995. 57Google Scholar
  52. 52.
    K.Fukui, B.G. Sumpter, D.W. Noid, C.Yang, and R.E. Tuzun. Analysis of eigenvalues and eigenvectors of polymer particles: random normal modes. Computational and Theoretical Polymer Science, 11(3):191–196, 2001. 92Google Scholar
  53. 53.
    B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler. Matrix eigensystem routines EISPACK Guide extension, 1977. Volume 51 of Lecture Notes in Computer Science. 31Google Scholar
  54. 54.
    P.E. Gill, G.H. Golub, W.Murray, and M.A. Saunders. Methods for modifying matrix factorizations. Mathematics of Computation, 28:505–535, 1974. 49, 51, 52, 54Google Scholar
  55. 55.
    P.E. Gill, W.Murray, and M.H. Wright. Practical Optimization. Academic Press, New York, 1981. 49Google Scholar
  56. 56.
    G.Golub and W.Kahan. Calculating the singular values and pseudo-inverse of a matrix. J. Soc. Indust. Appl. Math.: Ser. B, Numer. Anal., 2:205–224, 1965. 104Google Scholar
  57. 57.
    G.H. Golub, S.Nash, and C.Van Loan. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans. on Automatic Control, AC-24:909–913, 1979. 38Google Scholar
  58. 58.
    G.H. Golub and V.Pereyra. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis, 10:413–432, 1973. 67Google Scholar
  59. 59.
    G.H. Golub and J.H. Wilkinson. Note on the iterative refinement of least squares solution. Numerische Mathematik, 9(2):139–148, 1966. 64Google Scholar
  60. 60.
    M.Gu. Finding well-conditioned similarities to block-didagonalize nonsymmetric matrices is NP-hard. Journal of Complexity, 11:377–391, 1995. 104Google Scholar
  61. 61.
    M.Gu and S.C. Eisenstat. Downdating the singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 16(3):793–810, 1995. 56Google Scholar
  62. 62.
    S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2(3):303–323, 1982. 38Google Scholar
  63. 63.
    P.C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, PA, 1998. 104Google Scholar
  64. 64.
    P.C. Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia, PA, 2006. 38Google Scholar
  65. 65.
    R.J. Hanson and C.L. Lawson. Extensions and applications of the Householder algorithm for solving linear least squares problems. Mathematics of Computation, 23(108):787–812, 1969. 56Google Scholar
  66. 66.
    F.Hespeler. Solution algorithm to a class of monetary rational equilibrium macromodels with optimal monetary policy design. Comput. Econ., 31:207–223, 2008. 108Google Scholar
  67. 67.
    D.J. Higham and N.J. Higham. Structured backward error and condition of generalized eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 20(2):493–512, 1998. 106Google Scholar
  68. 68.
    N.J. Higham. A survey of condition number estimation for triangular matrices. SIAM Review, 29:575–596, 1987. 35, 57Google Scholar
  69. 69.
    N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 2002. 36Google Scholar
  70. 70.
    N.J. Higham and P.A. Knight. Matrix powers in finite precision arithmetic. SIAM Journal on Matrix Analysis and Applications, 16(2):343–358, 1995. 89Google Scholar
  71. 71.
    N.J. Higham, D.S. Mackey, and F.Tisseur. The conditioning of linearizations of matrix polynomials. SIAM Journal on Matrix Analysis and Applications, 28:1005–1028, 2006. 108Google Scholar
  72. 72.
    N.J. Higham, D.S. Mackey, and F.Tisseur. Definite matrix polynomials and their linearization by definite pencils. SIAM Journal on Matrix Analysis and Applications, 31:478–502, 2009. 109Google Scholar
  73. 73.
    A.S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell, New York, 1965. 30Google Scholar
  74. 74.
    D.A. Huckaby and T.F. Chan. Stewart’s pivoted QLP decomposition for low-rank matrices. Numerical Linear Algebra with Applications, 12:153–159, 2004. 104Google Scholar
  75. 75.
    A.Jennings. A direct method for computing latent roots and vectors of a symmetric matrix. Proceedings of the Cambridge Philosphical Society, 63:755–765, 1967. 97Google Scholar
  76. 76.
    Z.Jia. Private communication, Aug. 22, 2009. 103Google Scholar
  77. 77.
    B.Kågström and D.Kressner. Multishift variants of the QZ algorithm with aggressive early deflation. SIAM Journal on Matrix Analysis and Applications, 29(1):199–227, 2006. 107Google Scholar
  78. 78.
    W.Kahan. Numerical linear algebra. Canadian Math. Bulletin, 9:757–801, 1966. 103Google Scholar
  79. 79.
    W.Kahan. Spectra of nearly Hermitian matrices. Proceedings of the American Mathematical Society, 48(1):11–17, 1975. 80Google Scholar
  80. 80.
    T.Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1995. 72Google Scholar
  81. 81.
    L.Kaufman. The LZ-algorithm to solve the generalized eigenvalue problem. SIAM Journal on Numerical Analysis, pages 997–1024, 1974. 107Google Scholar
  82. 82.
    L.Kaufman. Some thoughts on the QZ algorithm for solving the generalized eigenvalue problem. ACM Transactions on Mathematical Software, 20(2):493–512, 1998. 107Google Scholar
  83. 83.
    C.Kenney and A.J. Laub. Condition estimates for matrix functions. SIAM Journal on Matrix Analysis and Applications, 10:191–209, 1989. 35Google Scholar
  84. 84.
    D.Kressner. Perturbation bounds for isotropic invariant subspaces of skew-Hamiltonian matrices. SIAM Journal on Matrix Analysis and Applications, 26(4):947–961, 2005. 92Google Scholar
  85. 85.
    A.J. Laub and J.Xia. Fast condition estimation for a class of structured eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 30(4):1658–1676, 2009. 38Google Scholar
  86. 86.
    C.-R. Lee. Private communication, Aug., 2009. 122Google Scholar
  87. 87.
    R.B. Lehoucq and D.C. Sorensen. Deflation techniques for an implicity restarted Arnoldi iteration. SIAM Journal on Matrix Analysis and Applications, 17:789–821, 1996. 113Google Scholar
  88. 88.
    R.-C. Li. A converse to the Bauer-Fike type theorem. Linear Algebra and Its Applications, 109:167–178, 1988. 106Google Scholar
  89. 89.
    R.-C. Li. On perturbation theorems for the generalized eigenvalues of regular matrix pencils. Math. Numer. Sinica, 11:10–19, 1989. In Chinese. Engl. trans. in Chinese Journal of Numerical Mathematics and Applications 11 (1989) 24-35. 106Google Scholar
  90. 90.
    R.-C. Li. Bounds on perturbations of generalized singular values and of associated subspaces. SIAM Journal on Matrix Analysis and Applications, 14:195–234, 1993. 109Google Scholar
  91. 91.
    R.-C. Li. On perturbations of matrix pencils with real spectra. Mathematics of Computation, 62:231–265, 1994. 106, 109Google Scholar
  92. 92.
    R.-C. Li. On perturbations of matrix pencils with real spectra, a revisit. Mathematics of Computation, 72:715–728, 2003. 109Google Scholar
  93. 93.
    K.J.R. Liu. Private communication, Sep. 11, 2009. 60Google Scholar
  94. 94.
    F.T. Luk and S.Qiao. A new matrix decomposition for signal processing. Automatica (IFAC), 30:39–43, January 1994. 59Google Scholar
  95. 95.
    H.M. Markowitz. The elimination form of the inverse and its application to linear programming. Management Science, 3(3):255–269, 1957. 48Google Scholar
  96. 96.
    R.Mathias. Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 19(2):541–550, 1998. 93Google Scholar
  97. 97.
    C.D. Meyer. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Review, 31(2):240–272, 1989. 82Google Scholar
  98. 98.
    C.D. Meyer. Uncoupling the Perron eigenvector problem. Linear Algebra and Its Applications, 114/115:69–94, 1989. 82Google Scholar
  99. 99.
    L.Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math., 11:50–59, 1960. 109Google Scholar
  100. 100.
    K.C. Ng and B.N. Parlett. Development of an accurate algorithm for EXP(Bt), Part I, programs to swap diagonal block, Part II. CPAM Technical Report 294, University of California, Berkeley, CA, 1988. 100Google Scholar
  101. 101.
    D.P. O’Leary. On bounds for scaled projections and pseudoinverses. Linear Algebra and Its Applications, 132:115–117, 1990. 69Google Scholar
  102. 102.
    J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia, PA, 2000. Vol. 30 of Classics in Applied Mathematics; Reprint of 1978 Academic Press book. 51Google Scholar
  103. 103.
    A.M. Ostrowski. Solution of equations in Euclidean and Banach spaces. Academic Press, New York-London, 1973. Third edition of Solution of Equations and Systems of Equations. 89Google Scholar
  104. 104.
    C.C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis, University of London, 1971. 103Google Scholar
  105. 105.
    C.C. Paige. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. Journal of the Institute of Mathematics and Its Applications, 18:341–349, 1976. 103Google Scholar
  106. 106.
    C.C. Paige. A note on a result of Sun Ji-guang: sensitivity of the CS and GSV decompositions. SIAM Journal on Numerical Analysis, 21:186–191, 1984. 109Google Scholar
  107. 107.
    C.C. Paige. Private communication, Aug. 14, 2009. 107Google Scholar
  108. 108.
    C.C. Paige and M.A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1):43–71, 1982. 31Google Scholar
  109. 109.
    C.C. Paige and M.Wei. History and generality of the CS decomposition. Linear Algebra and Its Applications, 208(209):303–326, 1994. 66, 70Google Scholar
  110. 110.
    C.C. Paige and M.A. Saunders. Towards a generalized singular value decomposition. SIAM Journal on Numerical Analysis, 18:398–405, 1981. 70, 109Google Scholar
  111. 111.
    C.-T. Pan. A modification to the LINPACK downdating algorithm. BIT, 30:707–722, 1990. 54Google Scholar
  112. 112.
    H.Park and L.Eldén. Downdating the rank-revealing URV decomposition. SIAM Journal on Matrix Analysis and Applications, 16(1):138–155, 1995. 59Google Scholar
  113. 113.
    B.Parlett and D.Scott. The Lanczos algorithm with selective orthogonalization. Mathematics of Computation, 33:217–238, 1979. 103Google Scholar
  114. 114.
    B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980. 80, 103, 112Google Scholar
  115. 115.
    B.N. Parlett. Private communication, Aug. 24, 2009. 107Google Scholar
  116. 116.
    B.N. Parlett. Private communication, Jun. 9, 2009. 122Google Scholar
  117. 117.
    B.N. Parlett and J.Le. Forward instability of tridiagonal QR. SIAM Journal on Matrix Analysis and Applications, 14:279–316, 1993. 113Google Scholar
  118. 118.
    A.Ruhe. Perturbation bounds for means of eigenvalues and invariant subspaces. BIT, 10:343–354, 1970. 72, 100Google Scholar
  119. 119.
    H.Rutishauser. Computational aspects of F. L. Bauer’s simultaneous iteration method. Numerische Mathematik, 13(1):4–13, March 1969. (submitted January 16, 1969). 97, 103Google Scholar
  120. 120.
    Y.Saad. Numerical solution of large Lyapunov equations. In Signal Processing, Scattering and Operator Theory, and Numerical Methods, Proc. Int. Symp. MTNS-89, volume III, pages 503–511. Birkhauser, Boston, 1990. 38Google Scholar
  121. 121.
    Y.Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, New York, 1992. 87, 112Google Scholar
  122. 122.
    Y.Saad. Private communication, 2009. 98, 122Google Scholar
  123. 123.
    M.A. Saunders. Large-scale linear programming using the Cholesky factorization. Technical Report STAN-CS-72-252, Computer Science Dept, Stanford University, 1972. 60 pp. 52, 54Google Scholar
  124. 124.
    M.A. Saunders. Private communication, 2009. 31, 52, 54Google Scholar
  125. 125.
    R.Schreiber and C.Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM Journal on Scientific and Statistical Computing, 10:53–57, 1989. 44Google Scholar
  126. 126.
    H.R. Schwarz. Numerik symmetrischer Matrizen. Teubner, Stuttgart, 1968. 97Google Scholar
  127. 127.
    H.Simon and A.Ando. Aggregation of variables in dynamic-systems. Econometrica, 29(2):111–138, 1961. 82Google Scholar
  128. 128.
    H.D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods. Linear Algebra and Its Applications, 61:101–131, 1984. 117Google Scholar
  129. 129.
    H.D. Simon. The Lanczos algorithm with partial reorthogonalization. Mathematics of Computation, 42:115–142, 1984. 118Google Scholar
  130. 130.
    D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications, 13:357–385, 1992. 112, 113Google Scholar
  131. 131.
    J.-G. Sun. A note on Stewart’s theorem for definite matrix pairs. Linear Algebra and Its Applications, 48:331–339, 1982. 109Google Scholar
  132. 132.
    J.-G. Sun. The perturbation bounds of generalized eigenvalues of a class of matrix-pairs. Math. Numer. Sinica, 4:23–29, 1982. In Chinese. 106Google Scholar
  133. 133.
    J.-G. Sun. Perturbation analysis for the generalized singular value decomposition. SIAM Journal on Numerical Analysis, 20:611–625, 1983. 109Google Scholar
  134. 134.
    J.-G. Sun. Perturbation bounds for eigenspaces of a definite matrix pair. Numerische Mathematik, 41:321–343, 1983. 109Google Scholar
  135. 135.
    J.-G. Sun. Gerschgorin type theorem and the perturbation of the eigenvalues of a singular pencil. Math. Numer. Sinica, 7:253–264, 1985. In Chinese. Engl. trans. in Chinese Journal of Numerical Mathematics and Applications 10 (1988) 1-13. 108Google Scholar
  136. 136.
    J.-G. Sun. On condition numbers of a nondefective multiple eigenvalue. Numerische Mathematik, 61(2):265–275, 1992. 93Google Scholar
  137. 137.
    J.-G. Sun. Backward perturbation analysis of certian characteristic subspaces. Numerische Mathematik, 65:357–382, 1993. 109Google Scholar
  138. 138.
    J.-G. Sun. On worst-case condition numbers of a nondefective multiple eigenvalue. Numerische Mathematik, 69(3):373–382, 1995. 93Google Scholar
  139. 139.
    V.L. Syrmos. Disturbance decoupling using constrained Sylvester equations. IEEE Trans. on Automatic Control, 39:797–803, 1994. 38Google Scholar
  140. 140.
    L.N. Trefethen and M.Embree. Spectra and pseudospectra. Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators. 92Google Scholar
  141. 141.
    S.Van Criekingen. A linear algebraic analysis of diffusion synthetic acceleration for three-dimensional transport equations. SIAM Journal on Numerical Analysis, 43:2034–2059, 2005. 70Google Scholar
  142. 142.
    C.Van Loan and J.Speiser. Computation of the C-S decomposition, with application to signal processing. In SPIE Conference on Advanced Algorithms and Architectures for Signal Processing, 19-20 Aug. 1986, pages 71–78. San Diego, CA; (USA), 1987. 70Google Scholar
  143. 143.
    C.F. Van Loan. A general matrix eigenvalue algorithm. SIAM Journal on Numerical Analysis, 12:819–834, 1975. 107Google Scholar
  144. 144.
    C.F. Van Loan. Generalizing the singular value decomposition. SIAM Journal on Numerical Analysis, 13:76–83, 1976. 70, 109Google Scholar
  145. 145.
    C.F. Van Loan. Computing the CS and the generalized singular value decompositions. Numerische Mathematik, 46(4):479–491, 1985. 70Google Scholar
  146. 146.
    C.F. Van Loan. On estimating the condition of eigenvalues and eigenvectors. Linear Algebra and Its Applications, 88-89:715–732, 1987. 35Google Scholar
  147. 147.
    C.F. Van Loan. The ubiquitous Kronecker product. J. Computational and Applied Mathematics, 123:85–100, 2000. 38Google Scholar
  148. 148.
    J.M. Varah. The Computation of Bounds for the Invariant Subspaces of a General Matrix Operator. PhD thesis, Stanford University, Department of Computer Science, Stanford, CA, 1967. 104Google Scholar
  149. 149.
    J.M. Varah. Invariant subspace perturbations for a non-normal matrix. In Information processing 71 (Proc. IFIP Congress, Ljubljana, 1971), Vol. 2: Applications, pages 1251–1253. North-Holland, Amsterdam, 1972. 72Google Scholar
  150. 150.
    J.M. Varah. On the separation of two matrices. SIAM Journal on Numerical Analysis, 16(2):216–222, 1979. 76, 92Google Scholar
  151. 151.
    J.J. Vartiainen. Unitary Transformations for Quantum Computing. PhD thesis, Helsinki University of Technology, Department of Engineering Physics and Mathematics, 2005. 70Google Scholar
  152. 152.
    Z.Z. Wang and F.H. Qi. Analysis of multiframe super-resolution reconstruction for image anti-aliasing and aeblurring. Image and Vision Computing, 24:393–404, 2005. 70Google Scholar
  153. 153.
    R.C. Ward. The combination shift QZ algorithm. SIAM Journal on Numerical Analysis, 12:835–853, 1975. 107Google Scholar
  154. 154.
    P-Ä. Wedin. On pseudo-inverses of perturbed matrices. Technical report, Technical Report, Department of Computer Science, Lund University, Sweden, 1969. 70Google Scholar
  155. 155.
    P-Ä. Wedin. Perturbation theorey for pseudo-inverses. BIT, 13:217–232, 1973. 66, 70Google Scholar
  156. 156.
    J.H. Wilkinson. Rounding Errors in Algebraic Processes. York House, London, 1963. reprinted by Dover, 1994. 39Google Scholar
  157. 157.
    J.H. Wilkinson. Modern error analysis. SIAM Review, 13(4):548–568, 1971. 83Google Scholar
  158. 158.
    J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, USA, London, 1988. 33, 39, 62, 108Google Scholar
  159. 159.
    P.Wolfe. The secant method for simultaneous nonlinear equations. Communications of the ACM, 2(12):12–13, 1959. 51Google Scholar
  160. 160.
    Z.Zlatev, J.Wasniewski, and K.Schaumburg. Condition number estimators in a sparse matrix software. SIAM Journal on Scientific and Statistical Computing, 7(4):1175–1189, 1986. 35Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Computer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations