Observer Based on ISM

  • Leonid Fridman
  • Alexander Poznyak
  • Francisco Javier Bejarano
Part of the Systems & Control: Foundations & Applications book series (SCFA)


In this chapter the concept of output ISM observer for systems with matched unknown inputs is developed. It is shown that using the output as a sliding mode surface one can compensate the unknown inputs. Then if the number of the inputs is more than the number of unknown outputs it is still possible to observe the system. Moreover, the main advantage of such observers is that they can provide, theoretically, an exact value of the state variables right after the initial time moment.


Negative Real Part Unknown Input Linear Time Invariant System Slide Mode Observer Observability Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 11.
    V. Utkin, Sliding Modes in Control and Optimization (Springer, Berlin, 1992)CrossRefMATHGoogle Scholar
  2. 12.
    C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications (CRC Press, New York, 1998)Google Scholar
  3. 13.
    V. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical Systems (Taylor & Francis Inc., Philadelphia, 1999)Google Scholar
  4. 15.
    A. Filippov, Differential Equations with Discontinuous Right-hand Sides (Kluwer, Dordrecht, 1988)CrossRefMATHGoogle Scholar
  5. 41.
    C. Edwards, S. Spurgeon, Sliding mode stabilization of uncertain systems using only output information. Int. J. Control 62(5), 1129–1144 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 42.
    S. Bag, S. Spurgeon, C. Edwards, Output feedback sliding mode design for linear uncertain systems. IEEE Proc. Control Theor. Appl. 144, 209–216 (1997)CrossRefMATHGoogle Scholar
  7. 43.
    C. Edwards, S. Spurgeon, R.G. Hebden, On development and applications of sliding mode observers, in Variable Structure Systems: Towards XXIst Century, ed. by J. Xu, Y. Xu. Lecture Notes in Control and Information Science (Springer, Berlin, 2002), pp. 253–282Google Scholar
  8. 44.
    H. Sira-Ramirez, M. Fliess, On the output feedback control of a synchronous generator, in IEEE Conference on Decision and Control, Bahamas, Dec 2004Google Scholar
  9. 45.
    H. Hashimoto, V. Utkin, J. Xu, H. Suzuki, F. Harashima, Vss observer for linear time varying system, in Proceeding of IECON’90, Pacific Grove CA, 1990, pp. 34–39Google Scholar
  10. 46.
    J. Barbot, M. Djemai, T. Boukhobza, Implicit triangular observer form dedicated to a sliding mode observer for systems with unknown inputs. Asian J. Control 5, 513–527 (2003)Google Scholar
  11. 47.
    T. Floquet, J.P. Barbot, A sliding mode approach of unknown input observers for linear systems. in 43th IEEE Conference on Decision and Control, 2004, pp. 1724–1729Google Scholar
  12. 48.
    C. Chen, Linear Systems: Theory and Design (Oxford University Press, New York, 1999)Google Scholar
  13. 49.
    A. Albert, Regression and Moore-Penrose Pseudoinverse. Mathematics in Science and Engineering, vol. 94 (Academic, New York, 1972)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Leonid Fridman
    • 1
  • Alexander Poznyak
    • 2
  • Francisco Javier Bejarano
    • 3
  1. 1.Departamento de Ingeniería de Control y RobóticaUniversidad Nacional Autonoma de MexicoMexico CityMexico
  2. 2.Department of Control AutomaticoCentro de Investigacion y Estudios Avanzados (CINVESTAV)Mexico CityMexico
  3. 3.Department of Research and Posgraduates Studies (SEPI)ESIME Ticomán, Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations